精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x
2x+1
,x∈(0,+∞)
,数列{an}满足a1=1,an+1=f(an);数列{bn}满足b1=
1
2
bn+1=
1
1-2f(Sn)
,其中Sn为数列{bn}前n项和,n=1,2,3…
(1)求数列{an}和数列{bn}的通项公式;
(2)设Tn=
1
a1b1
+
1
a2b2
+…+
1
anbn
,证明Tn<5.
分析:(1)由f(x)=
x
2x+1
,知an+1=f(an) =
an
2an+1
,所以
1
an+1
=
1
an
-2
an=
1
2n-1
(n∈N*)
.由bn+1=
1
1-2f(Sn)
,知bn+1=
1
1-
2Sn
2Sn+1
=2Sn+1
,由此能求出数列{an}和数列{bn}的通项公式.
(2)依题意Tn=2+
1
2
[3×1+5×
1
3
+7×(
1
3
)
2
+…+
(2n-1)×(
1
3
)
n-2
]
,令An=3×1+5×
1
3
+7×(
1
3
)
2
+…+(2n-1)×(
1
3
)
n-2
,由错位相减法能求出An= 6-
3
2
×(
1
3
)
n-2
-
2n-1
2
×(
1
3
)
n-2
,所以Tn=2+
1
2
[6-
3
2
×(
1
3
)
n-2
-
2n-1
2
×(
1
3
)
n-2
]
=5-
3
4
×(
1
3
)
n-2
-
2n-1
2
×(
1
3
)
n-2
<5.
解答:解:(1)∵f(x)=
x
2x+1
,∴an+1=f(an) =
an
2an+1

1
an+1
=
1
an
+2

{
1
an
}
是以
1
a1
=1
为首项,以2为公差的等差数列,
1
an
=1+(n-1)×2

an=
1
2n-1
(n∈N*)
,又∵f(x)=
x
2x+1
bn+1=
1
1-2f(Sn)

bn+1=
1
1-
2Sn
2Sn+1
=2Sn+1

bn+2=2Sn+1+1,
∴bn+2-bn+1=2(Sn+1-Sn),
∴bn+2=3bn+1,∵b1=
1
2
,b2=2S1+1=2,
∴{bn}从第二项起成等比数列,公比为3,
bn=
1
2
,n=1
2•3n-2,n≥2

(2)证明:依题意
Tn=2+
1
2
[3×1+5×
1
3
+7×(
1
3
)
2
+…+
(2n-1)×(
1
3
)
n-2
]

An=3×1+5×
1
3
+7×(
1
3
)
2
+…+(2n-1)×(
1
3
)
n-2
,①
1
3
An=3×
1
3
+5×(
1
3
)
2
+7×(
1
3
)
3
+…+(2n-1)×(
1
3
)
n-1
,②
①-②,得
2
3
An=3×1+2[
1
3
+(
1
3
)
2
+(
1
3
)
3
+…+(
1
3
)
n-2
]
-(2n-1)•(
1
3
)
n-1

=3+2×
1
3
[1-(
1
3
)
n-2
]
1-
1
3
-(2n-1)×(
1
3
)
n-1

An= 6-
3
2
×(
1
3
)
n-2
-
2n-1
2
×(
1
3
)
n-2

Tn=2+
1
2
[6-
3
2
×(
1
3
)
n-2
-
2n-1
2
×(
1
3
)
n-2
]

=5-
3
4
×(
1
3
)
n-2
-
2n-1
2
×(
1
3
)
n-2
<5.
即Tn<5.
点评:本题考查数列与函数的综合,解题时要认真审题,仔细解答,注意错位相减法的合理运用.易错点是计算量大,在计算过程中容易出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案