精英家教网 > 高中数学 > 题目详情
2.如图,圆柱内有一个直三棱柱,三棱柱的底面在圆柱底面内,且底面是正三角形.如果三棱柱的体积为$12\sqrt{3}$,圆柱的底面直径与母线长相等,则圆柱的侧面积为(  )
A.12πB.14πC.16πD.18π

分析 设圆柱的底面半径为R,求出三棱柱的底面边长为$\sqrt{3}R$,利用棱柱的体积,求出底面半径,然后求解侧面积.

解答 解:设圆柱的底面半径为R,底面是正三角形.边长为a,
$\frac{\sqrt{3}}{2}a=\frac{3}{2}R$,
三棱柱的底面边长为$\sqrt{3}R$,
三棱柱的体积为$12\sqrt{3}$,圆柱的底面直径与母线长相等,
可得$\frac{{\sqrt{3}}}{4}{(\sqrt{3}R)^2}•2R=12\sqrt{3}$
得R=2,
S圆柱侧=2πR•2R=16π.
故选:C.

点评 本题考查几何体的体积的求法,几何体的内接体问题的应用,圆柱的侧面积的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.与30°角终边相同的角的集合是(  )
A.{α|α=k•360°+$\frac{π}{6}$,k∈Z}B.{α|α=2kπ+30°,k∈Z}
C.{α|α=2k•360°+30°,k∈Z}D.{α|α=2kπ+$\frac{π}{6}$,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数$f(x)=\left\{\begin{array}{l}{2^x}+a,\;\;x≥0\\{x^2}-ax,x<0.\end{array}\right.$,若f(x)的最小值是a,则a=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设f(x)=x2+2xsinθ+1.
(1)当θ为何值时方程f(x)=0有解?求出该方程的解;
(2)若f(x)在[-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$]上是单调减函数,求θ的取值范围;
(3)若f(x)≥x2对一切实数θ成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=m•4x-3×2x+1-2的图象与x轴有交点,则实数m的取值范围是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知定义在R上的函数y=f(x)满足:函数y=f(x-1)的图象关于直线x=1对称,且当x∈(-∞,0),f(x)+xf′(x)<0(f′(x)是函数f(x)的导函数)成立.若$a=(sin\frac{1}{2})•f(sin\frac{1}{2})$,b=(ln2)•$f(ln2),c=(lo{g_{\frac{1}{2}}}\frac{1}{4})•$$f(lo{g_{\frac{1}{2}}}\frac{1}{4})$,则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设f(x)=(x+1)eax(其中a≠0),曲线y=f(x)在x=$\frac{1}{a}$处有水平切线.
(1)求a的值;
(2)设g(x)=f(x)+x+xlnx,证明:对任意x1,x2∈(0,1)有|g(x1)-g(x2)|<e-1+2e-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将f(x)=2sinx的图象向左平移$\frac{π}{6}$个单位,再向上平移2个单位,所得的图象对应的函数解析式为(  )
A.$y=2sin(x+\frac{π}{6})-2$B.$y=2sin(x-\frac{π}{6})+2$C.$y=2sin(x-\frac{π}{6})-2$D.$y=2sin(x+\frac{π}{6})+2$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知椭圆x2+2y2=4,则以(1,1)为中点的弦的长度为$\frac{\sqrt{30}}{3}$.

查看答案和解析>>

同步练习册答案