【题目】已知函数,其中为正实数.
(1)若函数在处的切线斜率为2,求的值;
(2)求函数的单调区间;
(3)若函数有两个极值点,求证: .
【答案】(1)1(2) 单调减区间为,,单调减区间为.(3)见解析
【解析】试题分析:(1)根据导数几何意义得,解得的值;(2)先求导数,再根据导函数是否变号分类讨论,最后根据导函数符号确定单调区间(3)先根据韦达定理得,再化简,进而化简所证不等式为,最后利用导函数求函数单调性,进而确定最小值,证得结论
试题解析:(1)因为,所以,
则,所以的值为1.
(2) ,函数的定义域为,
若,即,则,此时的单调减区间为;
若,即,则的两根为,
此时的单调减区间为,,
单调减区间为.
(3)由(2)知,当时,函数有两个极值点,且.
因为
要证,只需证.
构造函数,则,
在上单调递增,又,且在定义域上不间断,
由零点存在定理,可知在上唯一实根, 且.
则在上递减, 上递增,所以的最小值为.
因为,
当时, ,则,所以恒成立.
所以,所以,得证.
科目:高中数学 来源: 题型:
【题目】已知命题p:对任意,不等式恒成立;命题q:存在,使得成立.
(1)若p为真命题,求m的取值范围;
(2)当,若p且q为假,p或q为真,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱台ABCD﹣A1B1C1D1中,底面ABCD是平行四边形,DD1⊥平面ABCD,AB=2AD,AD=A1B1,∠BAD=60°.
(Ⅰ)证明:CC1∥平面A1BD;
(Ⅱ)求直线CC1与平面ADD1A1所成角的正弦值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用.据市场分析,每辆单车的营运累计收入 (单位:元)与营运天数满足.
(1)要使营运累计收入高于800元,求营运天数的取值范围;
(2)每辆单车营运多少天时,才能使每天的平均营运收入最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点分别是, ,且点在椭圆上.
(1)求椭圆的标准方程;
(2)设椭圆的左顶点为,过点的直线与椭圆相交于异于的不同两点, ,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(题文)从某校高一年级随机抽取名学生,获得了他们日平均睡眠时间(单位:小时)的数据,整理得到数据分组及频数分布表:
组号 | 分组 | 频数 | 频率 |
(Ⅰ)求的值.
(Ⅱ)若,补全表中数据,并绘制频率分布直方图.
(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,若上述数据的平均值为,求,的值,并由此估计该校高一学生的日平均睡眠时间不少于小时的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某投资公司计划投资两种金融产品,根据市场调查与预测,产品的利润与投资金额的函数关系为,产品的利润与投资金额的函数关系为(注:利润与投资金额单位:万元).
(1)该公司现有100万元资金,并计划全部投入两种产品中,其中万元资金投入产品,试把两种产品利润总和表示为的函数,并写出定义域;
(2)怎样分配这100万元资金,才能使公司的利润总和获得最大?其最大利润总和为多少万元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,某抛物线的顶点为原点,焦点为圆心,经过点的直线交圆于, 两点,交此抛物线于, 两点,其中, 在第一象限, , 在第二象限.
(1)求该抛物线的方程;
(2)是否存在直线,使是与的等差中项?若存在,求直线的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com