精英家教网 > 高中数学 > 题目详情

【题目】已知奇函数.

1)求实数的值;

2)判断函数在其定义域上的单调性,并用定义证明;

3)若对所有的恒成立,求实数的取值范围.

【答案】12)函数R上的增函数,证明见解析(3

【解析】

1)根据奇函数性质,可知,代入即可求得的值.

2)利用定义,,作差,将整式变形后即可判断符号,进而判断函数的单调性.

3)根据奇函数的性质,结合单调递增,即可将不等式变形为;结合辅助角公式及恒成立问题,解关于m的不等式组即可求得的取值范围.

1)若为奇函数,

,

解得.

2)由(1)可知,.R上的增函数.

证明:任取,

所以函数R上的增函数.

3)若对所有的恒成立,

因为是奇函数,

对所有的恒成立.

因为R上的增函数,

对所有的恒成立.

对所有的恒成立.

利用辅助角公式变形可得

因为对所有的恒成立.

.

,

解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四名同学组成一个4100米接力队,老师要安排他们四人的出场顺序,以下是他们四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒.老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定在老师安排的出场顺序中跑第三棒的人是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,已知Aab,给出下列说法:

①若,则此三角形最多有一解;

②若,且,则此三角形为直角三角形,且

③当,且时,此三角形有两解.

其中正确说法的个数为(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数的图像关于直线对称且当过点作曲线的两条切线,若这两条切线互相垂直,则该函数的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的参数方程为为参数).在以坐标原点为极点,轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线的极坐标方程是.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)设点.若直与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)当为自然对数的底数)时,求的极小值;

2)讨论函数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)时,讨论函数的单调性;

(2)时,若不等式时恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数的图象与曲线C:存在公共切线,则实数的取值范围为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如城镇小汽车的普及率为75%,即平均每100个家庭有75个家庭拥有小汽车,若从如城镇中任意选出5个家庭,则下列结论成立的是( )

A.5个家庭均有小汽车的概率为

B.5个家庭中,恰有三个家庭拥有小汽车的概率为

C.5个家庭平均有3.75个家庭拥有小汽车

D.5个家庭中,四个家庭以上(含四个家庭)拥有小汽车的概率为

查看答案和解析>>

同步练习册答案