精英家教网 > 高中数学 > 题目详情

已知函数f(x)=logax,g(x)=x,h(x)=ax
(1)若a=2,设m(x)=h(x)-g(x),n(x)=g(x)-f(x),当x>1时,试比较m(x)与n(x)的大小(只需要写出结果,不必证明);
(2)若数学公式,设P是函数g(x)图象在第一象限上的一个动点,过点P作平行于x轴的直线
与函数h(x)和f(x)的图象分别交于A、B两点,过点P作平行于y轴的直线与函数h(x)和f(x)的图象分别交于C、D两点,求证:|AB|=|CD|.

解:(1)大小关系:m(x)>n(x)
(2)由点P在直线g(x)=x上,设P(t,t),(t>0)
,得x=-log2t,∴A(-log2t,t),
,得.∴.…
,D(t,-log2t),∴
∴|AB|=|CD|.…
分析:(1)大小关系:m(x)>n(x).
(2)设P(t,t),(t>0),分别求出A、B、C、D坐标,再利用两点距离公式计算证明.
点评:本题考查函数的性质及应用,考查了图象交点,距离公式的应用.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案