£¨2012•³É¶¼Ä£Ä⣩¸ù¾Ý¶¨ÒåÔÚ¼¯ºÏAÉϵĺ¯Êýy=f£¨x£©£¬¹¹ÔìÒ»¸öÊýÁз¢ÉúÆ÷£¬Æ乤×÷Ô­ÀíÈçÏ£º
¢ÙÊäÈëÊý¾Ýx0¡ÊA£¬¼ÆËã³öx1=f£¨x0£©£»
¢ÚÈôx0∉A£¬ÔòÊýÁз¢ÉúÆ÷½áÊø¹¤×÷£»
Èôx0¡ÊA£¬ÔòÊä³öx1£¬²¢½«x1·´À¡»ØÊäÈë¶Ë£¬ÔÙ¼ÆËã³öx2=f£¨x1£©£®²¢ÒÀ´Ë¹æÂɼÌÐøÏÂÈ¥£®
ÏÖÔÚÓÐA={x|0£¼x£¼1}£¬f(x)=
mx
m+1-x
£¨m¡ÊN*£©£®
£¨1£©ÇóÖ¤£º¶ÔÈÎÒâx0¡ÊA£¬´ËÊýÁз¢ÉúÆ÷¶¼¿ÉÒÔ²úÉúÒ»¸öÎÞÇîÊýÁÐ{xn}£»
£¨2£©Èôx0=
1
2
£¬¼Çan=
1
xn
£¨n¡ÊN*£©£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÔÚµÃÌõ¼þÏ£¬Ö¤Ã÷
1
4
£¼xm¡Ü
1
3
£¨m¡ÊN*£©£®
·ÖÎö£º£¨1£©µ±x¡ÊA£¬¼´0£¼x£¼1 ʱ£¬ÓÉm¡ÊN*£¬¿ÉÖª0£¼f£¨x£©£¼1£¬¼´f£¨x£©¡ÊA£¬¹Ê¶ÔÈÎÒâx0¡ÊA£¬ÓÐx1=f£¨x0£©¡ÊA£¬ÓÉ x1¡ÊA ÓÐx2=f£¨x1£©¡ÊA£¬ÒÔ´ËÀàÍÆ£¬¿ÉÒ»Ö±¼ÌÐøÏÂÈ¥£¬´Ó¶ø¿ÉÒÔ²úÉúÒ»¸öÎÞÇîÊýÁУ»
£¨2£©Ò×Ö¤{bn}ÊÇÒÔ
m+1
m
ΪÊ×ÏÒÔ
m+1
m
Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬´Ó¶øÇó³öbn=(
m+1
m
)
n
£¬´Ó¶øÇó³öan=(
m+1
m
)
n
+1£»
£¨3£©ÒªÖ¤
1
4
£¼xm¡Ü
1
3
£¬¼´Ö¤3¡Ü(
m+1
m
)
m
+1£¼4
£¬Ö»ÐèÖ¤2¡Ü(1+
1
m
)
m
£¼3
£¬µ±m¡ÊN*ʱ£¬ÀûÓöþÏîʽ¶¨ÀíÒÔ¼°·ÅËõ·¨Ö¤Ã÷²»µÈʽ¼´¿É£®
½â´ð£º½â£º£¨1£©µ±x¡ÊA£¬¼´0£¼x£¼1 ʱ£¬ÓÉm¡ÊN*£¬¿ÉÖªm+1-x£¾0£¬
¡à
mx
m+1-x
£¾0

ÓÖ
mx
m+1-x
-1=
(m+1)(x-1)
m+1-x
£¼0

¡à
mx
m+1-x
£¼1

¡à0£¼f£¨x£©£¼1£¬¼´f£¨x£©¡ÊA
¹Ê¶ÔÈÎÒâx0¡ÊA£¬ÓÐx1=f£¨x0£©¡ÊA£¬
 ÓÉ x1¡ÊA ÓÐx2=f£¨x1£©¡ÊA£¬
  x2¡ÊA ÓÐx3=f£¨x2£©¡ÊA£»
ÒÔ´ËÀàÍÆ£¬¿ÉÒ»Ö±¼ÌÐøÏÂÈ¥£¬´Ó¶ø¿ÉÒÔ²úÉúÒ»¸öÎÞÇîÊýÁÐ
£¨2£©ÓÉxn+1=f£¨xn£©=
mxn
m+1-xn
£¬¿ÉµÃ
1
xn+1
=
m+1
m
 •
1
x
-
1
m
£¬
¡àan+1=
m+1
m
an-
1
m
£¬
¼´an+1=
m+1
m
(an-1)
£®
Áîbn=an-1£¬Ôòbn+1=
m+1
m
bn
£¬
ÓÖb1=
m+1
m
¡Ù0
£¬
ËùÒÔ{bn}ÊÇÒÔ
m+1
m
ΪÊ×ÏÒÔ
m+1
m
Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ®
bn=(
m+1
m
)
n
£¬¼´an=(
m+1
m
)
n
+1      
£¨3£©ÒªÖ¤
1
4
£¼xm¡Ü
1
3
£¬¼´Ö¤3¡Ü(
m+1
m
)
m
+1£¼4
£¬Ö»ÐèÖ¤2¡Ü(1+
1
m
)
m
£¼3
£¬
µ±m¡ÊN*ʱ£¬
ÓÐ(1+
1
m
)
m
=
C
0
m
(
1
m
)
0
+
C
1
m
(
1
m
)
1
+¡­+
C
m
m
(
1
m
)
m
¡Ý2£¬
ÒòΪ£¬µ±k¡Ý2 ʱ£¬
ÓÉ
C
k
m
(
1
m
)
k
=
m(m-1)¡­(m-k+1 )
m
1
k!
£¼
1
k!
¡Ü
1
k-1
-
1
k
£®
ËùÒÔ£¬µ±m¡Ý2ʱ(1+
1
m
)
m
=
C
0
m
(
1
m
)
0
+
C
1
m
(
1
m
)
1
+¡­+
C
m
m
(
1
m
)
m
£¬
£¼1+1+£¨1-
1
2
£©+£¨
1
2
-
1
3
£©+¡­£¨
1
n-1
-
1
n
£©=3-
1
n
£¼3
ÓÖµ±m=1ʱ£¬2¡Ü(1+
1
m
)
m
=2£¼3
£¬
ËùÒÔ¶ÔÓÚÈÎÒâm¡ÊN*£¬¶¼ÓÐ (1+
1
m
)
m
£¼3

ËùÒÔ¶ÔÓÚÈÎÒâm¡ÊN*£¬¶¼ÓÐÖ¤
1
4
£¼xm¡Ü
1
3
£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˵ȱÈÊýÁеÄͨÏʽ£¬ÒÔ¼°ÎÞÇîÊýÁеÄÖ¤Ã÷ºÍ¶þÏîʽ¶¨ÀíÖ¤Ã÷²»µÈʽ£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•³É¶¼Ä£Ä⣩É躯Êýf£¨x£©=-
13
x3
+2ax2-3a2x+b£¨³£Êýa£¬bÂú×ã0£¼a£¼1£¬b¡ÊR£©£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼äºÍ¼«Öµ£»
£¨2£©Èô¶ÔÈÎÒâµÄx¡Ê[a+1£¬a+2]£¬²»µÈʽ|f'£¨x£©|¡Üaºã³ÉÁ¢£¬ÇóaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•³É¶¼Ä£Ä⣩¶¨Ò壺ÈôƽÃæµã¼¯AÖеÄÈÎÒ»¸öµã£¨x0£¬y0£©£¬×Ü´æÔÚÕýʵÊýr£¬Ê¹µÃ¼¯ºÏB={(x£¬y)|
(x-x0)2+(y-y0)2
£¼r}⊆A
£¬Ôò³ÆAΪһ¸ö¿ª¼¯£¬¸ø³öÏÂÁм¯ºÏ£º
¢Ù{£¨x£¬y£©|x2+y2=1}£»      
¢Ú{£¨x£¬y|x+y+2£¾0£©}£»
¢Û{£¨x£¬y£©||x+y|¡Ü6}£»     
¢Ü{(x£¬y)|0£¼x2+(y-
2
)
2
£¼1}
£®
ÆäÖÐÊÇ¿ª¼¯µÄÊÇ
¢Ú¢Ü
¢Ú¢Ü
£®£¨Çëд³öËùÓзûºÏÌõ¼þµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•³É¶¼Ä£Ä⣩ÏòÁ¿
OA
=(2£¬0)£¬
OB
=(2+2cos¦È£¬2
3
+2sin¦È)
£¬ÔòÏòÁ¿
OA
Óë
OB
µÄ¼Ð½ÇµÄ·¶Î§ÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•³É¶¼Ä£Ä⣩ÒÑÖªº¯Êýf(x)=
3
sinx£¬g(x)=cos(¦Ð+x)
£¬Ö±Ïßx=aÓëf£¨x£©£¬g£¨x£©µÄͼÏó·Ö±ð½»ÓÚM£¬NÁ½µã£¬Ôò|MN|µÄ×î´óֵΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•³É¶¼Ä£Ä⣩ÔÚÈñ½Ç¡÷ABCÖУ¬ÒÑÖª5
.
AC
.
BC
=4|
.
AC
|•|
.
BC
|£¬Éè
m
=£¨sinA£¬sinB£©£¬
n
=£¨cosB£¬-cosA£©ÇÒ
m
n
=
1
5
£¬
Ç󣺣¨1£©sin£¨A+B£©µÄÖµ£»£¨2£©tanAµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸