【题目】如图,菱形与正所在平面互相垂直,平面,,.
(1)证明:平面;
(2)若,求直线与平面所成角的正弦值.
【答案】(1)证明过程详见解析(2)
【解析】
(1)过点作于,由面面垂直的性质可知平面,又平面,可得,即四边形为平行四边形,得到线线平行,从而得到线面平行;
(2)分别以,,为轴建立空间直角坐标系,求出平面的法向量,利用线面角的向量公式进行计算即可得到答案.
解:(1)如图,过点作于,连接EH,∴.
∵平面平面,平面,
平面平面于 ∴ 平面.
又∵平面,.∴,
∴四边形为平行四边形. ∴,
∵平面,平面,
∴平面.
(2)连接.由(1)得为中点,又,为等边三角形,
∴.分别以,,为轴建立
如图所示的空间直角坐标系.
,, ,
设平面的法向量为.
由,得
令,得.
,
直线与平面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。
(I)求应从小学、中学、大学中分别抽取的学校数目。
(II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,
(1)列出所有可能的抽取结果;
(2)求抽取的2所学校均为小学的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数)
(1)A类工人中和B类工人各抽查多少工人?
(2)从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2:
表1:
生产能力分组 | |||||
人数 | 4 | 8 | x | 5 | 3 |
表2:
生产能力分组 | ||||
人数 | 6 | y | 36 | 18 |
①先确定x,y,再在答题纸上完成下列频率分布直方图.就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
②分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人和生产能力的平均数(同一组中的数据用该区间的中点值作代表)
图1A类工人生产能力的频率分布直方图 图2B类工人生产能力的频率分布直方图
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】各国医疗科研机构都在研制某种病毒疫苗,现有G,E,F三个独立的医疗科研机构,它们在一定时期内能研制出疫苗的概率分别是.求:
(1)他们都研制出疫苗的概率;
(2)他们都失败的概率;
(3)他们能够研制出疫苗的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】企业需为员工缴纳社会保险,缴费标准是根据职工本人上一年度月平均工资(单位:元)的缴纳,
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
t | 1 | 2 | 3 | 4 | 5 |
y | 270 | 330 | 390 | 460 | 550 |
某企业员工甲在2014年至2018年各年中每月所撒纳的养老保险数额y(单位:元)与年份序号t的统计如下表:
(1)求出t关于t的线性回归方程;
(2)试预测2019年该员工的月平均工资为多少元?
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
(注:,,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》给出求羡除体积的“术”是:“并三广,以深乘之,又以袤乘之,六而一”.其中的“广”指羡除的三条平行侧棱的长,“深”指一条侧棱到另两条侧棱所在平面的距离,“袤”指这两条侧棱所在平行线之间的距离,用现代语文描述:在羡除中,,,,,两条平行线与间的距离为,直线到平面的距离为,则该羡除的体积为.已知某羡除的三视图如图所示,则该羡除的体积为
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,定点,为圆上任意一点,线段的垂直平分线和半径相交于点,当点在圆上运动时,点的轨迹为曲线.
(1)求曲线的方程;
(2)若过定点的直线交曲线于不同的两点,(点在点,之间),且满足,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对数函数g(x)=1ogax(a>0,a≠1)和指数函数f(x)=ax(a>0,a≠1)互为反函数.已知函数f(x)=3x,其反函数为y=g(x).
(Ⅰ)若函数g(kx2+2x+1)的定义域为R,求实数k的取值范围;
(Ⅱ)若0<x1<x2且|g(x1)|=|g(x2)|,求4x1+x2的最小值;
(Ⅲ)定义在I上的函数F(x),如果满足:对任意x∈I,总存在常数M>0,都有-M≤F(x)≤M成立,则称函数F(x)是I上的有界函数,其中M为函数F(x)的上界.若函数h(x)=,当m≠0时,探求函数h(x)在x∈[0,1]上是否存在上界M,若存在,求出M的取值范围,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com