精英家教网 > 高中数学 > 题目详情
18.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的渐近线为正方形OABC的边OA,OC所在直线,点B为该双曲线的焦点,若正方形OABC的边长为2,则a=(  )
A.1B.2C.$\frac{1}{2}$D.4

分析 根据双曲线渐近线在正方形的两个边,得到双曲线的渐近线互相垂直,即双曲线是等轴双曲线,结合等轴双曲线的性质进行求解即可.

解答 解:∵双曲线的渐近线为正方形OABC的边OA,OC所在的直线,
∴渐近线互相垂直,则双曲线为等轴双曲线,即渐近线方程为y=±x,
即a=b,
∵正方形OABC的边长为2,
∴OB=2$\sqrt{2}$,即c=2$\sqrt{2}$,
则a2+b2=c2=8,
即2a2=8,
则a2=4,a=2,
故选:B.

点评 本题主要考查双曲线的性质的应用,根据双曲线渐近线垂直关系得到双曲线是等轴双曲线是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow a$与$\overrightarrow b$的夹角为${60°},|{\overrightarrow a}|=2,|{\overrightarrow b}|=6$,则$2\overrightarrow a-\overrightarrow b$在$\overrightarrow a$方向上的投影为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在数列{an}中,a1=1,点$(\frac{1}{a_n},\frac{1}{{{a_{n+1}}}})$在函数f(x)=x+3的图象上.
(1)求数列{an}的通项公式;
(2)若bn=(-1)n$\frac{1}{a_n}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若tanα-$\frac{1}{tanα}=\frac{3}{2},α∈({\frac{π}{4},\frac{π}{2}})$,则cos2α的值为(  )
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在数列{an}中,2a1=a2,且a${\;}_{n+1}=\frac{{a}_{n}}{n+1}+1$,则a3=$\frac{13}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=blnx.
(1)当b=1时,求函数G(x)=x2-x-f(x)在区间$[{\frac{1}{2},e}]$上的最大值与最小值;
(2)若在[1,e]上存在x0,使得x0-f(x0)<-$\frac{1+b}{x_0}$成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.证明:
(1)$\frac{sinθ-cosθ}{tanθ-1}$=cosθ
(2)sin4α-cos4α=2sin2α-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知命题p:?x∈R使得x2+x+1<0;命题q:?x∈[-1,2],使得x2-1>0,则p∧¬q的真假为假.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知命题p:?x0∈Z,${x}_{0}^{2}$的个位数字等于3.则命题¬p:?x∈Z,x2的个位数字都不等于3.

查看答案和解析>>

同步练习册答案