精英家教网 > 高中数学 > 题目详情

【题目】已知曲线的参数方程为为参数),曲线的极坐标方程为.

(1)将曲线的参数方程化为普通方程,将曲线的极坐标方程化为直角坐标方程.

(2)曲线是否相交?若相交,请求出公共弦长;若不相交,请说明理由.

【答案】1;(2.

【解析】

试题()参数方程化为普通方程,消去参数即可,极坐标方程化为直角坐标方程,利用两者坐标之间的关系互化,此类问题一般较为容易;()由()知,两曲线都是圆,判断两圆的位置关系,利用圆心距与两半径大小关系判断即可,两圆相交,公共弦和易求.

试题解析:()由消去参数,得的普通方程为:

,得,化为直角坐标方程为

的圆心为,圆的圆心为

两圆相交

设相交弦长为,因为两圆半径相等,所以公共弦平分线段

公共弦长为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给定公差大于0的有限正整数等差数列其中为质数甲、乙两人轮流从个石子中取石子规定每次每人可取个石子取走的石子不再放回甲先取取到最后一个石子者为胜试问谁有必胜策略

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数

)求函数的极值;

)当时,证明:对一切的,都有恒成立;

)当时,函数有最小值,记的最小值为,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点

(1)求的取值范围;

(2)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在常数,使得向量共线?如果存在,求值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C:的离心率为,并且椭圆经过点P(1,),直线l的方程为x=4.

(1)求椭圆的方程;

(2)已知椭圆内一点E(1,0),过点E作一条斜率为k的直线与椭圆交于A,B两点,交直线l于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数,使得k1+k2k3?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)若有两个零点,求实数的取值范围,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知双曲线的两条渐近线分别为.为坐标原点,动直线分别交直线两点(分别在第一四象限),且的面积恒为8.试探究:是否存在总与直线有且只有一个公共点的双曲线?若存在,求出双曲线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种常见疾病可分为Ⅰ、Ⅱ两种类型.为了解该疾病类型与地域、初次患该疾病的年龄(以下简称初次患病年龄)的关系,在甲、乙两个地区随机抽取100名患者调查其疾病类型及初次患病年龄,得到如下数据:

(1)从Ⅰ型疾病患者中随机抽取1人,估计其初次患病年龄小于40岁的概率;

(2)记“初次患病年龄在的患者为“低龄患者”,初次患病年龄在的患者为“高龄患者”,根据表中数据,解决以下问题:

将以下两个列联表补充完整,并判断“地域”“初次患病年龄”这两个变量中哪个变量与该疾病的类型有关联的可能性更大.(直接写出结论,不必说明理由)

(ii)记(i)中与该疾病的类型有关联的可能性更大的变量为,问:是否有99.9%的把握认为“该疾病的类型与有关?”

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的普通方程为,以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(I)求的参数方程与的直角坐标方程;

(II)射线交于异于极点的点,与的交点为,求.

查看答案和解析>>

同步练习册答案