精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递减,若f(log2a)+f(2log a)≥2f(﹣1),则实数a的取值范围是

【答案】[ ,2]
【解析】解:函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递减,故f(x)在(﹣∞,0]上单调递增.
若f(log2a)+f(2log a)≥2f(﹣1),
即f(log2a)+f(log a2)≥2f(﹣1),即f(log2a)+f( a)≥2f(﹣1),
即f(log2a)+f(﹣log2a)≥2f(﹣1),即f(log2a)+f(log2a)≥2f(﹣1),
即f(log2a)≥f(﹣1)=f(1),﹣1≤log2a≤1,∴ ≤a≤2,
所以答案是:
【考点精析】根据题目的已知条件,利用奇偶性与单调性的综合的相关知识可以得到问题的答案,需要掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于函数f(x)=ax2+2x﹣2a,若方程f(x)=0有相异的两根x1 , x2
(1)若a>0,且x1<1<x2 , 求a的取值范围;
(2)若x1﹣1,x2﹣1同号,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(其中 为自然对数的底数)

(Ⅰ)求函数的极值;

(Ⅱ)当时,若直线与曲线没有公共点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x的定义域是[0,3],设g(x)=f(2x)﹣f(x+2).
(1)求g(x)的解析式及定义域;
(2)求函数g(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意实数a,b定义运算“⊙”:a⊙b= 设f(x)=2x+1⊙(1﹣x),若函数f(x)与函数g(x)=x2﹣6x在区间(m,m+1)上均为减函数,且m∈{﹣1,0,1,3},则m的值为(
A.0
B.﹣1或0
C.0或1
D.0或1或3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为(
A.
B.
C.
D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017湖南长沙二模】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等极如下表:

质量指标值

等级

三等品

二等品

一等品

从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:

1根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定?

2在样本中,按产品等极用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;

3该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,程序框图的输出结果为﹣18,那么判断框①表示的“条件”应该是(

A.i>10?
B.i>9?
C.i>8?
D.i>7?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017南通二模19】已知函数,其中e为自然对数的底数.

(1)求函数在x1处的切线方程;

(2)若存在,使得成立,其中为常数,

求证:

(3)若对任意的,不等式恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案