精英家教网 > 高中数学 > 题目详情
已知F是抛物线y2=4x的焦点,Q是抛物线的准线与x轴的交点,直线l经过点Q,
(1)若直线l与抛物线恰有一个交点,求l的方程;
(2)如图所示,直线l与抛物线交于A、B两点,
①记直线FA、FB的斜率分别为k1、k2,求k1+k2的值;
②若线段AB上一点R满足,求点R的轨迹方程.
解:依题意得:Q(-1,0),
直线l的斜率存在,设其斜率为k,则直线l的方程为y=k(x+1),
代入抛物线方程得:k2x2+(2k2-4)x+k2=0,
(1)若k≠0,令Δ=0得,k=±1,此时l的方程为y=x+1或y=-x-1;
若k=0,易知满足题意,故l的方程为y=0;
(2)显然k≠0,记A(x1,y1),B(x2,y2),
,x1x2=1,

②设点R的坐标为(x,y),




由Δ>0得,-1<k<1,
又k≠0,∴y∈(-2,0)∪(0,2);
综上,点R的轨迹方程为x=1,y∈(-2,0)∪(0,2)。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为(  )
A、
3
4
B、1
C、
5
4
D、
7
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F是抛物线y2=4x的焦点,A,B是抛物线上两点,△AFB是正三角形,则该正三角形的边长为
8±4
3
8±4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•重庆一模)已知F是抛物线y2=4x的焦点,Q是抛物线的准线与x轴的交点,直线l经过点Q.
(Ⅰ)若直线l与抛物线恰有一个交点,求l的方程;
(Ⅱ)如题20图,直线l与抛物线交于A、B两点,
(ⅰ)记直线FA、FB的斜率分别为k1、k2,求k1+k2的值;
(ⅱ)若线段AB上一点R满足
|AR|
|RB|
=
|AQ|
|QB|
,求点R的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点.若线段AB的中点到y轴的距离为
5
4
,则|AF|+|BF|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F是抛物线y2=4x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=5,则线段AB的中点到该抛物线准线的距离为(  )

查看答案和解析>>

同步练习册答案