精英家教网 > 高中数学 > 题目详情
在空间直角坐标系中,已知点A(1,-2,1),B(2,2,2)点P在z轴上,且|PA|=|PB|,则点P的坐标为(  )
A、(0,0,-3)
B、(0,0,3)
C、(0,0,-
2
5
D、(0,0,
2
5
考点:空间两点间的距离公式
专题:
分析:根据P在z轴上,设点P(0,0,z),再由|PA|=|PB|结合空间两点距离公式,建立关于z的方程,解之得z=3,从而得到点P坐标.
解答: 解:∵点P在z轴上,
∴可设点P(0,0,z)
又∵A(1,-2,1),B(2,2,2),且|PA|=|PB|,
(0-1)2+(0+2)2+(z-1)2
=
(0-2)2+(0-2)2+(z-2)2

解得z=3,所以点P坐标为(0,0,3)
故选:B.
点评:本题给出z轴上一点到空间两个已知点的距离相等,求该点的坐标,着重考查了空间两点的距离公式和含有根号的方程的解法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在0°~360°之间,与角-150°终边相同的角是(  )
A、150°B、-30°
C、30°D、210°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin67°cos37°,cos37°cos67°),
b
=(-cos67°sin37°,sin37°sin67°),
c
=(1,t),若
c
∥(
a
+
b
),则t=(  )
A、
3
B、2
3
C、3
3
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)log3
27
+lg25+lg4+7 log7
1
2
+(-9.8)0
(2)(
2
3
-2+(1-
2
0-(3
3
8
 
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=5x,若f(a+b)=3,则f(a)•f(b)等于(  )
A、3B、4C、5D、25

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的增函数,且对于任意的实数x都有f(x)=-f(2-x)成立,如果实数m,n满足不等式组
f(m2-6m-5)+f(8n-n2)≤0
0≤n≤7
,则m+2n的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,a+b=
3
c,2sin2C=3sinAsinB.
(1)求∠C;
(2)若S△ABC=
3
,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:

若α∈(
π
2
,π),sin(π-α)=
3
5
,则tanα=(  )
A、-
4
3
B、
4
3
C、-
3
4
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设点A(-
3
,0)B(
3
,0)直线AM,BM相交于点M,且它们的斜率之积为-
2
3

(1)求动点M的轨迹c的方程;
(2)若直线l过点F(1,0)且绕F旋转,l与圆O:x2+y2=5相交于P,Q两点,l与轨迹c相交于R,S两点,若|PQ|∈[4,
19
],求△F′RS的面积的最大值和最小值(F′为轨迹C左焦点).

查看答案和解析>>

同步练习册答案