精英家教网 > 高中数学 > 题目详情
4.记满足下列条件函数f(x)的集合为M,当|x1|≤1,|x2|≤1时,|f(x1)-f(x2)|≤4|x1-x2|,若函数g(x)=x2+2x+1,则g(x)与M的关系是g(x)∈M.

分析 由题意可知函数集合M中f(x)满足当|x1|≤1,|x2|≤1时,函数的导数值的绝对值小于4,求出g(x)的导数,判断g(x)与M的关系.

解答 解:由题意可知,函数集合M中f(x)均满足
当|x1|≤1,|x2|≤1时,|f(x1)-f(x2)|≤4|x1-x2|,
即有函数的导数值的绝对值小于4,
而g(x)的导数为g′(x)=2x+2,
当|x1|≤1,|x2|≤1时,g′(x)≤4,
故g(x)∈M.
故答案为:g(x)∈M.

点评 此题主要考查二次函数的性质及函数的导数与直线斜率的关系,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若α,β满足0<α,β<π,则α-2β的取值范围是(  )
A.(-π,0)B.(-2π,π)C.(-π,2π)D.(0,2π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知矩形ABCD,且AD=2AB,又△ADE为等腰直角三角形,F为ED的中点,$\overrightarrow{EA}$=$\overrightarrow{{e}_{1}}$,$\overrightarrow{EF}$=$\overrightarrow{{e}_{2}}$,以$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$为基底,试表示向量$\overrightarrow{AF}$,$\overrightarrow{AB}$,$\overrightarrow{AD}$及$\overrightarrow{BD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知O点在△ABC的内部,且$\overrightarrow{OA}$+2$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,则△ABC的面积与△AOC的面积之比是$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知正六边形ABCDEF,$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{BD}$=$\overrightarrow{b}$,用$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{DE}$,$\overrightarrow{AD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给出下列三个类比结论:
①若a,b,c,d∈R,复数a+bi=c+di,则a=c,b=d,类比推理出:若a,b,c,d∈Q,a+b$\sqrt{5}$=c+d$\sqrt{5}$,则a=c,b=d;
②已知直线a,b,c,若a∥b,b∥c,则a∥c,类比推理出,已知向量$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$,若$\overrightarrow{a}∥\overrightarrow{b}$,$\overrightarrow{b}∥\overrightarrow{c}$,则$\overrightarrow{a}∥\overrightarrow{c}$;
③同一平面内,a,b,c是三条互不相同的直线,若a∥b,b∥c,则a∥c,类比推理出:空间中,α,β,γ是三个互补相同的平面,若α∥β,β∥γ,则α∥γ.
其中正确结论的个数是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某研究机构从一所普通高中随机选取4名高三男生进行某项研究,其理解力x与记忆力y的数据统计如下表所示:
x681012
y2356
由表中数据可得回归直线方程$\widehat{y}$=0.7x+$\widehat{a}$,据此模型预测理解力为14的同学记忆力约为7.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$=(m+3,m-cos2α),$\overrightarrow{b}$=(n,$\frac{n}{2}$+sinα),其中m,n,α为实数,若$\overrightarrow{a}$=2$\overrightarrow{b}$,则$\frac{m}{n}$的取值范围是(  )
A.[-1,$\frac{7}{5}$]B.[0,$\frac{7}{4}$]C.[-2,$\frac{7}{3}$]D.[-2,$\frac{7}{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.一个几何体三视图如图所示,求该几何体的体积和表面积.

查看答案和解析>>

同步练习册答案