精英家教网 > 高中数学 > 题目详情

阅读下列命题
数学公式的一个对称中心是数学公式
②已知数学公式,那么函数f(x)的值域是数学公式
③α,β均为第一象限的角,且α>β,则sinα>sinβ
④f(x)=sinx,g(x)=cosx,直线x=a(a∈R)与y=f(x),y=g(x)的交点分别为M、N,那么|MN|的最大值为2.以上命题正确的有


  1. A.
    .①②
  2. B.
    .③④
  3. C.
    .①③
  4. D.
    ②④
A
分析:①通过余弦函数的对称中心求出 的对称中心,然后判断 是否为其中之一.
②f(x)=minsinx,cosx知f(x)为正弦余弦的最小值,通过函数图象判断.
③根据正弦函数在第一象限的单调性直接判断;
④令F(x)=|sinx-cosx|求其最大值
解答:①函数 的一个对称中心
∵y=cosx的对称中心为:(kπ+,0)(k∈z)
=kπ+
得:x= (k∈z)
当k=-1时,x=
∴函数 的一个对称中心 正确.
②已知函数f(x)=min{sinx,cosx},则f(x)的值域为
根据正弦函数余弦函数图象易知,两者最小值为-1,最小值中最大为
故正确
③若α,β均为第一象限角,且α>β,则sinα<sinβ.显然不正确如α=390度,β=30度,显然α>β,但是sinα=sinβ
对于④,令F(x)=|sinx-cosx|=|sin(x-)|当x-=+kπ,x=+kπ,即当a=+kπ时,函数F(x)取到最大值 ,故④错,
故选A.
点评:本题考查余弦函数的对称性,以及余弦函数的图象.通过对四个选项的分析分别判断,本题为中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:阅读理解

阅读下列命题
函数f(x)=4cos(2x+
π
3
)
的一个对称中心是(
-5π
12
,0)

②已知f(x)=
sinx,(sinx<cosx)
cosx,(cosx≤sinx)
,那么函数f(x)的值域是[-1,
2
2
]

③α,β均为第一象限的角,且α>β,则sinα>sinβ
④f(x)=sinx,g(x)=cosx,直线x=a(a∈R)与y=f(x),y=g(x)的交点分别为M、N,那么|MN|的最大值为2.以上命题正确的有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•金山区二模)(1)设u、v为实数,证明:u2+v2
(u+v)2
2
;(2)请先阅读下列材料,然后根据要求回答问题.
材料:已知△LMN内接于边长为1的正三角形ABC,求证:△LMN中至少有一边的长不小于
1
2

证明:线段AN、AL、BL、BM、CM、CN的长分别设为a1、a2、b1、b2、c1、c2,设LN、LM、MN的长为x、y、z,
x2=a12+a22-2a1a2cos60°=a12+a22-a1a2
同理:y2=b12+b22-b1b2,z2=c12+c22-c1c2
x2+y2+z2=a12+a22+b12+b22+c12+c22-a1a2-b1b2-c1c2

请利用(1)的结论,把证明过程补充完整;
(3)已知n边形A1′A2′A3′…An′内接于边长为1的正n边形A1A2…An,(n≥4),思考会有相应的什么结论?请提出一个的命题,并给与正确解答.
注意:第(3)题中所提问题单独给分,解答也单独给分.本题按照所提问题的难度分层给分,解答也相应给分,如果同时提出两个问题,则就高不就低,解答也相同处理.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

阅读下列命题
函数f(x)=4cos(2x+
π
3
)
的一个对称中心是(
-5π
12
,0)

②已知f(x)=
sinx,(sinx<cosx)
cosx,(cosx≤sinx)
,那么函数f(x)的值域是[-1,
2
2
]

③α,β均为第一象限的角,且α>β,则sinα>sinβ
④f(x)=sinx,g(x)=cosx,直线x=a(a∈R)与y=f(x),y=g(x)的交点分别为M、N,那么|MN|的最大值为2.以上命题正确的有(  )
A..①②B..③④C..①③D.②④

查看答案和解析>>

科目:高中数学 来源:2009年上海市金山区高考数学二模试卷(理科)(解析版) 题型:解答题

(1)设u、v为实数,证明:u2+v2;(2)请先阅读下列材料,然后根据要求回答问题.
材料:已知△LMN内接于边长为1的正三角形ABC,求证:△LMN中至少有一边的长不小于
证明:线段AN、AL、BL、BM、CM、CN的长分别设为a1、a2、b1、b2、c1、c2,设LN、LM、MN的长为x、y、z,
x2=a12+a22-2a1a2cos60°=a12+a22-a1a2
同理:y2=b12+b22-b1b2,z2=c12+c22-c1c2
x2+y2+z2=a12+a22+b12+b22+c12+c22-a1a2-b1b2-c1c2

请利用(1)的结论,把证明过程补充完整;
(3)已知n边形A1′A2′A3′…An′内接于边长为1的正n边形A1A2…An,(n≥4),思考会有相应的什么结论?请提出一个的命题,并给与正确解答.
注意:第(3)题中所提问题单独给分,解答也单独给分.本题按照所提问题的难度分层给分,解答也相应给分,如果同时提出两个问题,则就高不就低,解答也相同处理.

查看答案和解析>>

同步练习册答案