精英家教网 > 高中数学 > 题目详情

以下茎叶图记录了甲、乙两组各三名同学在期末考试的数学成绩,乙组记录中有一个数字模糊,无法确认.假设这个数字具有随机性,并在图中以a表示.
(1)若甲、乙两个小组的数学平均成绩相同,求a的值;
(2)求乙组平均成绩超过甲组平均成绩的概率;
(3)当a=2时,分别从甲、乙两组中各随机选取一名同学,设这两名同学成绩之差的绝对值为X,求随机变量X的分布列和数学期望,

(1)1;(2);(3)详见解析.

解析试题分析:(1)根据平均数计算公式,直接由甲、乙两个小组的数学平均成绩相等列式求解的值;
(2)分值从种情况,由(1)中求得的结果可得,当时,乙组平均成绩超过甲组平均成绩,然后由古典概率模型概率计算公式求概率;
(3)用枚举法列出所有可能的成绩结果,查出两名同学的数学成绩之差的绝对值为的情况数,然后由古典概率模型概率计算公式求概率,然后列分布列,根据公式,此题属于基础题型,关键是读懂题,就能拿满分.
试题解析:(1)依题意,得: 
解得 .                        3分
(2)解:设“乙组平均成绩超过甲组平均成绩”为事件
依题意 ,共有种可能.
由(1)可知,当时甲、乙两个小组的数学平均成绩相同,
所以当时,乙组平均成绩超过甲组平均成绩,共有种可能.
因此乙组平均成绩超过甲组平均成绩的概率.    7分
(3)解:当时,分别从甲、乙两组同学中各随机选取一名同学,所有可能的成绩结果有种, 它们是:
,,,,,,,
则这两名同学成绩之差的绝对值的所有取值为
因此.          10分


0
1
2
3
4






所以随机变量的分布列为:






练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某校研究性学习小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组:,绘制成如图所示的频率分布直方图.

(1)求直方图中的值;
(2)求续驶里程在的车辆数;
(3)若从续驶里程在的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某地区为了解高二学生作业量和玩电脑游戏的情况,对该地区内所有高二学生采用随机抽样的方法,得到一个容量为200的样本.统计数据如下:

(1)已知该地区共有高二学生42500名,根据该样本估计总体,其中喜欢电脑游戏并认为作业不多的人有多少名?
(2)在A,B,C,D,E,F六名学生中,仅有A,B两名学生认为作业多.如果从这六名学生中随机抽取两名,求至少有一名学生认为作业多的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个袋中装有8个大小质地相同的球,其中4个红球、4个白球,现从中任意取出四个球,设为取得红球的个数.
(1)求的分布列;
(2)若摸出4个都是红球记5分,摸出3个红球记4分,否则记2分.求得分的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

现有编号分别为1,2,3,4,5,6,7, 8,9的九道不同的数学题。某同学从这九道题中一次随机抽取两道题,每题被抽到的概率是相等的,用符号表示事件“抽到两 题的编号分别为,且”.
(1)共有多少个基本事件?并列举出来;
(2)求该同学所抽取的两道题的编号之和小于17但不小于11的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某射手进行射击训练,假设每次射击击中目标的概率为,且每次射击的结果互不影响,已知射手射击了5
次,求:
(1)其中只在第一、三、五次击中目标的概率;
(2)其中恰有3次击中目标的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):

场次
投篮次数
命中次数
场次
投篮次数
命中次数
主场1
22
12
客场1
18
8
主场2
15
12
客场2
13
12
主场3
12
8
客场3
21
7
主场4
23
8
客场4
18
15
主场5
24
20
客场5
25
12
 
(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;
(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;
(3)记为表中10个命中次数的平均数,从上述比赛中随机选择一场,记为李明在这场比赛中的命中次数,比较的大小(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

一只不透明的袋子中装有1个白球和1个红球,这些球除颜色外其余都相同,搅匀后从中任意摸出1个球,记录下颜色后放回袋中并搅匀,再从中任意摸出1个球,则两次摸出的球颜色相同的概率是           

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知复数z=x+yi(x,y∈R)在复平面上对应的点为M.
(1)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中随机取一个数作为y,求复数z为纯虚数的概率;
(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:所表示的平面区域内的概率.

查看答案和解析>>

同步练习册答案