精英家教网 > 高中数学 > 题目详情
已知函数f(x)=3sin(2x+
π
6
),x∈R.
(1)求f(
π
12
)的值;
(2)若sinθ=
4
5
,θ∈(0,
π
2
),求f(
12
-θ).
考点:正弦函数的图象
专题:三角函数的求值
分析:(1)由条件直接计算f(
π
12
)的值.
(2)由条件利用同角三角函数的基本关系求得cosθ的值,再根据f(
12
-θ)=6sinθcosθ,求得结果.
解答: 解:(1)由函数f(x)=3sin(2x+
π
6
),x∈R,可得f(
π
12
)=3sin
π
3
=
3
3
2

(2)由sinθ=
4
5
,θ∈(0,
π
2
),可得cosθ=
1-sin2θ
=
3
5

∴f(
12
-θ)=3sin(
6
-2θ+
π
6
)=3sin2θ=6sinθcosθ=6•
4
5
3
5
=
72
25
点评:本题主要考查同角三角函数的基本关系、诱导公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tanα=
1
2
,则log5(sinα+2cosα)-log5(3sinα-cosα)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,其中a1=1,a7=13
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=
1
anan+1
,Tn为数列{bn}的前n项和,当不等式λTn<n+8(n∈N*)恒成立时,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax
1+x2
+1(a≠0).
(1)当a=1时,求函数f(x)图象在点(0,1)处的切线方程;
(2)求函数f(x)的单调区间;
(3)若a>0,g(x)=x2emx,且对任意的x1,x2∈[0,2],f(x1)≥g(x2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某个体服装店经营某种服装,一周内获纯利润y(元)与该周每天销售这种服装的件数x之间的一组数据如下:
x3456789
y66697381899091
已知
7
i=1
x
2
i
=280
7
i=1
y
2
i
=45309,
7
i=1
xiyi
=3487,此时r0.05=0.754
(1)求
.
x
.
y

(2)判断一周内获纯利润y与该周每天销售件数x之间是否线性相关,如果线性相关,求出线性回归方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a=3,c=3
3
,A=30°,求C及b.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方形ABCD中,E,F分别是AB,BC的中点,现在沿DE,DF及EF把△ADE,△CDF和△BEF折起,使A,B,C三点重合,重合后的点记作P,那么在四面体P-DEF中必有(  )
A、DP⊥平面PEF
B、DM⊥平面PEF
C、PM⊥平面DEF
D、PF⊥平面DEF

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,∠A=60°,a=5,c=8,求∠C.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}对任意的正整数n和常数λ(λ∈N),等式an+λ2=an×an+2λ都成立,则称数列{an}为“λ阶梯等比数列”,
an+λ
an
的值称为“阶梯比”,若数列{an}是3阶梯等比数列且a1=1,a4=2.则a10=
 

查看答案和解析>>

同步练习册答案