精英家教网 > 高中数学 > 题目详情

【题目】如图,四边形均为菱形

1求证:平面

2求证:平面

3求二面角的余弦值

【答案】1证明见解析;2证明见解析;3.

【解析】

试题分析:1由线面垂直的判定定理得到结论2通过证明线线平行,得到线面平行3建立空间直角坐标系,求出平面的法向量,易知,所以面的法向量为,再求出它们的夹角的余弦值.

试题解析:1证明:设相交于点连接,因为四边形为菱形所以中点,又所以

因为,所以平面

2证明:因为四边形均为菱形

所以所以平面平面

平面所以平面

3解:因为四边形为菱形所以△为等边三角形

因为中点所以平面

两两垂直建立如图所示的空间直角坐标系

因为四边形为菱形所以

所以

所以

设平面的法向量则有所以

易知平面的法向量为

由二面角是锐角,得

所以二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD 中,AB∥CD AB⊥ADCD=2AB,平面PAD⊥底面ABCDPA⊥ADEF分别为CDPC的中点.求证:

1BE∥平面PAD

2)平面BEF⊥平面PCD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60), ...,[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:

(Ⅰ)求成绩落在[70,80)上的频率,并补全这个频率分布直方图;

(Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分;

(Ⅲ) 从成绩在[40,50)和[90,100]的学生中任选两人,求他们在同一分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是偶函数,对于x∈R都有f(x+6)=f(x)+f(3)成立.当x1,x2∈[0,3],且x1≠x2时,都有 >0,给出下列命题:

① f(3)=0;

② 直线x=-6是函数y=f(x)的图象的一条对称轴;

③ 函数y=f(x)在[-9,-6]上为单调递减函数;

④ 函数y=f(x)在[-9,9]上有4个零点.

其中正确的命题是____________.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a=(12),b=(-2,n),ab的夹角是45°.

(1) 求b

(2) cb同向,且aca垂直,求向量c的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{}的前n项和 (n为正整数)。

1,求证数列{}是等差数列,并求数列{}的通项公式;

(2)试比较的大小,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形均为菱形

1求证:平面

2求证:平面

3求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期为.

1求函数的单调增区间;

2将函数的图象向左平移个单位,再向上平移1个单位,得到函数的图象,若上至少含有10个零点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设lm是两条不同的直线,α是一个平面,则下列命题正确的是( )

A. l⊥m,则l⊥α

B. l⊥αl∥m,则m⊥α

C. l∥α,则l∥m

D. l∥αm∥α,则l∥m

查看答案和解析>>

同步练习册答案