精英家教网 > 高中数学 > 题目详情
10.设函数f(x)在(-∞,+∞)上有意义,对于给定的正数k,定义函数fk(x)=$\left\{\begin{array}{l}{f(x),f(x)<k}\\{k,f(x)≥k}\end{array}\right.$取k=3,f(x)=($\frac{k}{2}$)|x|,则fk(x)=$\frac{k}{2}$的零点有(  )
A.0个B.1个
C.2个D.不确定,随k的变化而变化

分析 先根据题中所给函数定义求出函数函数fK(x)的解析式,从而得到一个分段函数,然后再利用指数函数的性质求出所求即可.

解答 解:函数fk(x)=$\left\{\begin{array}{l}{(\frac{3}{2})^{x},0<x<lo{{g}_{\frac{3}{2}}}^{3}}\\{(\frac{3}{2})^{-x},-lo{{g}_{\frac{3}{2}}}^{3}<x≤0}\\{3,-lo{{g}_{\frac{3}{2}}}^{3}≤x≤lo{{g}_{\frac{3}{2}}}^{3}}\end{array}\right.$的图象如图所示:
则fk(x)=$\frac{k}{2}=\frac{3}{2}$的零点就是fk(x)与y=$\frac{3}{2}$的交点,故交点有两个,即零点两个.
故选:C

点评 本题为新定义问题,正确理解新定义的含义是解决此类问题的关键.本题还考查含有绝对值的函数的性质问题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图:Rt△ABC中,∠CAB=90°,AB=2,AC=$\frac{\sqrt{2}}{2}$,曲线E过C点,动点P在E上运动,且保持|PA|+|PB|的值不变.
(1)建立适当的坐标系,求曲线E的标准方程;
(2)过B点且倾斜角为120°的直线l交曲线E于M,N两点,求|MN|的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若复数z=(1+ai)(1-i)为纯虚数,i是虚数单位,则实数a的值是-1,|$\overline{z}+i$|=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\overrightarrow a$=(sin(x+$\frac{π}{3}$),sin(x-$\frac{π}{6}$)),$\overrightarrow b$=(cos(x-$\frac{π}{6}$),cos(x+$\frac{π}{3}$)),$\overrightarrow a$•$\overrightarrow b$=$\frac{5}{13}$,且x∈[-$\frac{π}{3}$,$\frac{π}{6}$],则sin2x的值为(  )
A.$\frac{{5\sqrt{3}+12}}{26}$B.$\frac{{5\sqrt{3}-12}}{26}$C.$\frac{{5+12\sqrt{3}}}{26}$D.$\frac{{5-12\sqrt{3}}}{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=(logmx)2+2logmx-3(m>0,且m≠1).
(Ⅰ)当m=2时,解不等式f(x)<0;
(Ⅱ)f(x)<0在[2,4]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.$\frac{2sin20°tan70°-2sin40°}{sin35°}$=$\sqrt{6}-\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)满足:对?x∈R+都有f′(x)=$\frac{3}{x}$f(x),且f(22016)≠0,则$\frac{f({2}^{2017})}{f({2}^{2016})}$的值为(  )
A.0.125B.0.8C.1D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.$\frac{si{n}^{2}50°}{1+sin10°}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设$\overrightarrow a=(-3,m),\overrightarrow b=(4,3)$,若$\overrightarrow a$与$\overrightarrow b$的夹角是钝角,则实数m的范围是(  )
A.m>4B.m<4C.m<4且$m≠\frac{9}{4}$D.m<4且$m≠-\frac{9}{4}$

查看答案和解析>>

同步练习册答案