精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
xex
(x>0)

(1)求函数f(x)的单调区间.
(2)设P为函数f(x)图象上的一点,以线段OP为母线绕x轴旋转得到几何体M,求几何体M的体积的最大值.
(3)如果0<x1<x2,且f(x1)=f(x2),试比较f(x2)与f(2-x1)的大小.
分析:(1)求导函数,利用导数的正负,可得函数的单调区间;
(2)表示出几何体M的体积,利用导数,确定函数的单调性,可得结论;
(3)确定0<x1<1<x2,2-x1>1,分类讨论,可得结论.
解答:解:(1)求导函数,可得f′(x)=
1-x
ex
(x>0)

令f′(x)>0,可得0<x<1;令f′(x)>0,可得x>1,
∴函数的单调递增区间是(0,1),单调递减区间是(1,+∞);
(2)几何体M的体积V=
1
3
π•(
x
ex
)
2
•x=
πx3
3e2x
(x>0)
∴V′=
πx2(9-x)
e2x

∴x∈(0,9)时,V′>0,函数单调递增;x∈(9,+∞)时,V′<0,函数单调递减,
∴x=9时,V取得最大值,最大值为
e18

(3)∵0<x1<x2,且f(x1)=f(x2),函数的单调递增区间是(0,1),单调递减区间是(1,+∞),
∴0<x1<1<x2
∴2-x1>1
若1<x2<2-x1,则f(x2)>f(2-x1);若x2>2-x1>1,则f(x2)<f(2-x1).
点评:本题考查导数知识的运用,考查函数的单调性,考查大小比较,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案