精英家教网 > 高中数学 > 题目详情

【题目】如图,过点的直线与圆相交于两点,过点且与垂直的直线与圆的另一交点为

(1)当点坐标为时,求直线的方程;

(2)求四边形面积的最大值.

【答案】(1)(2)

【解析】试题分析:(1)先根据斜率公式求直线的斜率,再根据垂直关系可得直线的斜率,最后根据点斜式求直线方程,(2)四边形面积,根据垂径定理求出(用直线斜率表示),再利用换元转化为二次函数,结合二次函数求最值,最后讨论斜率不存在时情况,并比较大小.

试题解析:解:(1)当点坐标为时,直线的斜率为

因为垂直,所以直线的斜率为

所以直线的方程为,即

(2)当直线轴垂直时,

所以四边形面积

当直线轴不垂直时,设直线方程为,即

则直线方程为,即

到直线的距离为

所以

到直线的距离为,所以

则四边形面积

(当时四边形不存在),

所以

故四边形面积的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos xsin 2x,下列结论中正确的是________(填入正确结论的序号).

①y=f(x)的图象关于点(2π,0)中心对称;

②y=f(x)的图象关于直线x=π对称;

③f(x)的最大值为

④f(x)既是奇函数,又是周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某学校高三年级共800名男生中随机抽取50人测量身高.据测量,被测学生身高全部介于155 cm到195 cm之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165);…;第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分.已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.

)估计这所学校高三年级全体男生身高在180 cm以上(含180 cm)的人数;

)求第六组、第七组的频率并补充完整频率分布直方图(用虚线标出高度);

(III)若从身高属于第六组和第八组的所有男生中随机抽取两人,记他们的身高分别为x、y,求事件“|x-y|≤5”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:

积极参加班级工作

不太主动参加班级工作

合计

学习积极性高

18

7

25

学习积极性一般

6

19

25

合计

24

26

50

(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?

(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关?并说明理由.

参考公式与临界值表:K2.

P(K2≥k)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)恒成立,求实数的取值范围;

(Ⅲ)求整数的值,使函数在区间上有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某集团为了获得更大的收益,每年要投入一定的资金用于广告促销.经调查投入广告费t(百万元),可增加销售额约为-t25t(百万元)(0t5) (注:收益=销售额-投放)

1)若该公司将当年的广告费控制在3百万元之内,则应投入多少广告费,才能使该公司由此获得的收益最大?

2)现该公司准备共投入3百万元,分别用于广告促销和技术改造.经预测,每投入技术改造费x(百万元),可增加的销售额约为-x3x23x(百万元).请设计一个资金分配方案,使该公司由此获得的收益最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数上是增函数,求实数的取值范围;

2)若函数上的最小值为3,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acos θ(a>0),过点P(-2,-4)的直线l: (t为参数)与曲线C相交于M,N两点.

(1)求曲线C的直角坐标方程和直线l的普通方程;

(2)若|PM|,|MN|,|PN|成等比数列,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形, 平面 ,点的中点,点在棱上移动.

(1)当点的中点时,试判断与平面的位置关系,并说明理由;

(2)求证:无论点的何处,都有

(3)求二面角的余弦值.

查看答案和解析>>

同步练习册答案