ÍÖÔ²C1£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄ³¤Ö᳤Ϊ4£¬½¹¾àΪ2£¬F1¡¢F2·Ö±ðΪÍÖÔ²µÄ×ó¡¢ÓÒ½¹µã£¬Ö±Ïßl1¹ýµãF1ÇÒ´¹Ö±ÓÚÍÖÔ²µÄ³¤Öᣬ¶¯Ö±Ïßl2´¹Ö±l1ÓÚµãP£¬Ï߶ÎPF2´¹Ö±Æ½·ÖÏß½»l2ÓÚµãM
£¨1£©ÇóÍÖÔ²C1µÄ±ê×¼·½³ÌºÍ¶¯µãMµÄ¹ì¼£C2µÄ·½³Ì£®
£¨2£©¹ýÍÖÔ²C1µÄÓÒ½¹µãF2×÷бÂÊΪ1µÄÖ±Ïß½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬Çó¡÷ABF1µÄÃæ»ý£®
£¨3£©Éè¹ì¼£C2ÓëxÖá½»ÓÚµãQ£¬²»Í¬µÄÁ½µãR¡¢SÔڹ켣C2ÉÏ£¬
Âú×ã
QR
QS
=0
ÇóÖ¤£ºÖ±ÏßRSºã¹ýxÖáÉϵĶ¨µã£®
·ÖÎö£º£¨1£©ÓÉÌâÉèÖª£º2a=4£¬¼´a=2£¬2c=2£¬¼´c=1£¬b2=a2-c2=3£¬¹ÊÍÖÔ²·½³ÌΪ
x2
4
+
y2
3
=1
£¬ÓÉMP=MF2£¬Öª¶¯µãMµ½¶¨Ö±Ïßl1£ºx=-1£¬µÄ¾àÀëµÈÓÚËüµ½¶¨µãF1£¨1£¬0£©µÄ¾àÀ룬ÓÉ´ËÄÜÇó³öµãMµÄ¹ì¼£C2µÄ·½³Ì£®
£¨2£©
x2
4
+
y2
3
=1
y=x-1
ÏûÈ¥x²¢ÕûÀíµÃ£º7y2+6y-9=0£¬ÉèA£¨x3£¬y3£©£¬B£¨x4£¬y4£©Ôòy3+y4=-
6
7
£¬y3y4=-
9
7
£¬ÓÉ´ËÄÜÇó³ö¡÷ABF1µÄÃæ»ý£®
£¨3£©Q£¨0£¬0£©£¬ÉèR(
y12
4
£¬y1)  £¬S(
y22
4
£¬y2)
£¬kRS=
y2-y1
y22
4
-
y21
4
=
4
y1+y2
£¬ÓÉ
QR
QS
=0
£¬Öª
y
2
1
y
2
2
16
+y1y2=0
£¬ÓÉÌâÉèÖªÖ±ÏßRSºã¹ý¶¨µã£¨4£¬0£©£®
½â´ð£º½â£º£¨1£©ÓÉÌâÉèÖª£º2a=4£¬¼´a=2£¬2c=2£¬¼´c=1£¬b2=a2-c2=3£¬¹ÊÍÖÔ²·½³ÌΪ
x2
4
+
y2
3
=1
£¬ÓÉMP=MF2£¬Öª
¡à¶¯µãMµ½¶¨Ö±Ïßl1£ºx=-1£¬µÄ¾àÀëµÈÓÚËüµ½¶¨µãF1£¨1£¬0£©µÄ¾àÀ룬
¡à¶¯µãMµÄ¹ì¼£ÊÇCΪl1×¼Ïߣ¬F2Ϊ½¹µãµÄÅ×ÎïÏß
¡àµãMµÄ¹ì¼£C2µÄ·½³ÌΪy2=4x£¨5·Ö£©
£¨2£©
x2
4
+
y2
3
=1
y=x-1
ÏûÈ¥x²¢ÕûÀíµÃ£º7y2+6y-9=0
ÉèA£¨x3£¬y3£©£¬B£¨x4£¬y4£©Ôòy3+y4=-
6
7
£¬y3y4=-
9
7
£¨7·Ö£©S¡÷ABF1=
1
2
|F1F2|•|y3-y4|=|y3-y4|
=
(y3+y4)2-4y3y4
=
12
2
7
£¨9·Ö£©
£¨3£©Q£¨0£¬0£©£¬ÉèR(
y12
4
£¬y1)  £¬S(
y22
4
£¬y2)
£¬kRS=
y2-y1
y22
4
-
y21
4
=
4
y1+y2
£¨10·Ö£©¡ß
QR
QS
=0
¡à
y
2
1
y
2
2
16
+y1y2=0
¡ßy1¡Ù0£¬y2¡Ù0¡ày1y2=-16x1x2=16£¨11·Ö£©¡àÖ±ÏßRS£ºy-y1=
4
y1+y2
(x-x1)
¡ày=
4
y1+y2
x+y1-
4x1
y1+y2
¡ày=
4
y1+y2
x+
y1(y1+y2)-4x1
y1+y2
=
4
y1+y2
x+
y
2
1
+y1y2-4•
y
2
1
4
y1+y2
=
4
y1+y2
x+
y1y2
y1+y2
=
4
y1+y2
x+
-16
y1+y2
=
4
y1+y2
(x-4)
£¨13·Ö£©
¹ÊÖ±ÏßRSºã¹ý¶¨µã£¨4£¬0£©£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éÖ±ÏߺÍԲ׶ÇúÏßµÄλÖùØϵ£¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâºÏÀíµØ½øÐеȼÛת»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÉèÍÖÔ²C1£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ×ó¡¢ÓÒ½¹µã·Ö±ðÊÇF1¡¢F2£¬Ï¶¥µãΪA£¬Ï߶ÎOAµÄÖеãΪB£¨OΪ×ø±êÔ­µã£©£¬Èçͼ£®ÈôÅ×ÎïÏßC2£ºy=x2-1ÓëyÖáµÄ½»µãΪB£¬ÇÒ¾­¹ýF1£¬F2µã£®
£¨¢ñ£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨¢ò£©ÉèM£¨0£¬-
4
5
£©£¬NΪÅ×ÎïÏßC2ÉϵÄÒ»¶¯µã£¬¹ýµãN×÷Å×ÎïÏßC2µÄÇÐÏß½»ÍÖÔ²C1ÓÚP¡¢QÁ½µã£¬Çó¡÷MPQÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C1£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÓÒ½¹µãF2ÓëÅ×ÎïÏßC2£ºy2=4xµÄ½¹µãÖغϣ¬ÍÖÔ²C1ÓëÅ×ÎïÏßC2ÔÚµÚÒ»ÏóÏ޵Ľ»µãΪP£¬|PF2|=
5
3
£¬ÇóÍÖÔ²C1µÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÈýÃÅÏ¿Ä£Ä⣩ÒÑÖªÍÖÔ²C1£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ³¤Ö᳤Ϊ4£¬ÀëÐÄÂÊΪ
1
2
£¬F1¡¢F2·Ö±ðΪÆä×óÓÒ½¹µã£®Ò»¶¯Ô²¹ýµãF2£¬ÇÒÓëÖ±Ïßx=-1ÏàÇУ®
£¨¢ñ£©£¨¢¡£©ÇóÍÖÔ²C1µÄ·½³Ì£» £¨¢¢£©Çó¶¯Ô²Ô²ÐÄC¹ì¼£µÄ·½³Ì£»
£¨¢ò£©ÔÚÇúÏßÉÏCÓÐÁ½µãM¡¢N£¬ÍÖÔ²C1ÉÏÓÐÁ½µãP¡¢Q£¬Âú×ãMF2Óë
NF2
¹²Ïߣ¬
PF2
Óë
QF2
¹²Ïߣ¬ÇÒ
PF2
MF2
=0£¬ÇóËıßÐÎPMQNÃæ»ýµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C1£º
x2
A2
+
y2
B2
=1(A£¾B£¾0)
ºÍË«ÇúÏßC2£º
x2
a2
-
y2
b2
=1(a£¾0£¬b£¾0)
ÓÐÏàͬµÄ½¹µãF1¡¢F2£¬2cÊÇËüÃǵĹ²Í¬½¹¾à£¬ÇÒËüÃǵÄÀëÐÄÂÊ»¥Îªµ¹Êý£¬PÊÇËüÃÇÔÚµÚÒ»ÏóÏ޵Ľ»µã£¬µ±cos¡ÏF1PF2=60¡ãʱ£¬ÏÂÁнáÂÛÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÉÇͷһģ£©ÒÑÖªÍÖÔ²C1£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬ÓÒ¶¥µãΪA£¬ÀëÐÄÂÊe=
1
2

£¨1£©ÉèÅ×ÎïÏßC2£ºy2=4xµÄ×¼ÏßÓëxÖá½»ÓÚF1£¬ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÉèÒÑ֪˫ÇúÏßC3ÒÔÍÖÔ²C1µÄ½¹µãΪ¶¥µã£¬¶¥µãΪ½¹µã£¬bÊÇË«ÇúÏßC3ÔÚµÚÒ»ÏóÏÞÉÏÈÎÒâ-µã£¬ÎÊÊÇ·ñ´æÔÚ³£Êý¦Ë£¨¦Ë£¾0£©£¬Ê¹¡ÏBAF1=¦Ë¡ÏBF1Aºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸