精英家教网 > 高中数学 > 题目详情
(2004•黄冈模拟)已知
i
j
分别是x轴,y轴方向上的单位向量,
OA1
=
j
OA2
=10
j
,且
An-1An
=3
AnAn+1
(n=2,3,4,…)
,在射线y=x(x≥0)上从下到上依次有点Bi=(i=1,2,3,…),
OB1
=3
i
+3
j
且|
Bn-1Bn
|=2
2
(n=2,3,4…).
(Ⅰ)求
A4A5

(Ⅱ)求
OAn
OBn

(III)求四边形AnAn+1Bn+1Bn面积的最大值.
分析:(1)由题意|An-1An|=3|AnAn+1|是一个等比关系,故根据等比数列公式求其通项,从而求得结果;
(2)由题意(1)中数列的前n项和即为An的纵坐标,再由在射线y=x(x≥0)上依次有点B1,B2,…,Bn,…即可得出Bn的坐标;
(3)根据四边形AnAn+1Bn+1Bn的几何特征,把四边形的面积分成两个三角形的面积来求,求出面积的表达式,再作差Sn-Sn-1,确定其单调性,然后求出最大值.
解答:解:(Ⅰ)∵
An-1An
=3
AnAn+1
AnAn+1
=
1
3
An-1An

A4A5
=
1
3
A3A4
=(
1
3
)2
A2A3
=(
1
3
)3
A1A2
=
1
27
(
OA2
-
OA1
)=
1
3
J
.(3分)

(II)由(1)知
AnAn+1
=
1
3n-1
A1A2
=
1
3n-3
j

OAn
=
OA1
+
A1A2
+…
An-1An
=
j
+
A1A2
+…+
An-1An

=
j
+9
j
+3
j
+…+
1
3n-3
j
=
j
+
9[1-(
1
3
)
n-1
]
1-
1
3
j
=
29-(
1
3
)
n-4
2
j
.(6分)

∵|
Bn-1Bn
|=2
2
Bn-1Bn
均在射线y=x(x≥0)上,
Bn-1Bn
=2
i
+2
j
.∴
OBn
=
OB1
+
B1B2
+
B2B3
+…+
Bn-1Bn
=3i+3
j
+(n-1)(2
i
+2
j
)

(III)∵|
AnAn+1
|=
1
3n-3
,△AnAn+1Bn+1的底面边AnAn+1的高为h1
=2n+3.
又|
BnBn+1
|=2
2
An(0,
29-(
1
3
)
n-4
2
)到直线y=x的距离为h2=
29-(
1
3
)
n-4
2
2

∴Sn=
1
2
•(2n+3)•
1
3n-3
+
1
2
•2
2
29-(
1
3
)
n-4
2
2
=
29
2
+
n
3n-3
,(10分)
而Sn-Sn-1=
n
3n-3
-
n-1
3n-4
=
-2n+3
3n-3
<0,
∴S1>S2>…>Sn>…
∴Smax=S1=
29
2
+
1
3-2
=
29
2
+9=
47
2
.
(12分)
点评:本题是一个数列应用题,也是等差等比数列的一个综合题,本题有着一个几何背景,需要做正确的转化和归纳,才能探究出正确的解决方法.本题是个难题,比较抽象.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2004•黄冈模拟)如图,A、B两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4.从中任取三条网线且使每条网线通过最大的信息量.
(I)设选取的三条网线由A到B可通过的信息总量为x,当x≥6时,则保证信息畅通.求线路信息畅通的概率;
(Ⅱ)求选取的三条网线可通过信息总量的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•黄冈模拟)若f(x)是以5为周期的奇函数且f(-3)=1,tanα=2,则f(20sinαcosα)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•黄冈模拟)下列四个函数中,同时具有性质:①最小正周期为2π;②图象关于直线x=
π
3
对称的一个函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•黄冈模拟)在复平面内,设向量
p1
=(
x
 
1
y1),
p2
=(
x
 
2
y2)又设复数z1=
x
 
1
+y1i;z2=
x
 
2
+y2
i(x1,x2,y1,y2∈R),则
p1
p2
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•黄冈模拟)平面向量
a
=(x,y),
b
=(x2y2),
c
=(1,1),
d
=(2,2),若
a
c
=
b
d
=1
,则这样的向量
a
有(  )

查看答案和解析>>

同步练习册答案