精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,底面是矩形,已知
(1)证明:平面
(2)求异面直线PC与AD所成的角的大小;
(3)求二面角的大小.
(1)证明见解析(2)(3)
                           
(1)                     …4分
         
(2)AD∥BC∠PCB(或其补角)为异面直线PC与AD所成角

……………………………………8分
(3)作
              

                       
          
  
           为二面角的平面角…………………………10分


        …………………………………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是边长为2的菱形,且
为正三角形,的中点,为棱的中点
(1)求证:平面
(2)求二面角的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,F
为CE上的点,且BF⊥平面ACE.
(Ⅰ)求证:AE⊥平面BCE;
(Ⅱ)求二面角B—AC—E的余弦值;
(Ⅲ)求点D到平面ACE的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥P—ABCD的底面是边长为a的正方形,PB⊥面ABCD.
(1)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积;
(2)证明无论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为正方形,且平面分别是的中点.
(Ⅰ)证明:EF∥平面PCD;
(Ⅱ)求二面角B-CE-F的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面为矩形,底面,点在侧棱上,

(I)证明:是侧棱的中点;
(Ⅱ)求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知菱形中,,沿对角线折起,使二面角,则点所在平面的距离等于           

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知四个命题,其中正确的命题是         (   )
①若直线l //平面,则直线l的垂线必平行平面
②若直线l与平面相交,则有且只有一个平面,经过l与平面垂直;
③若一个三棱锥每两个相邻侧面所成的角都相等,则这个三棱锥是正三棱锥;
④若四棱柱的任意两条对角线都相交且互相平分,则这个四棱柱为平行六面体.
A.①B.②C.③D.④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如右放置在水平面上的组合体由直三棱柱与正三棱锥组成,其中,.它的正视图、俯视图、从左向右的侧视图的面积分别为
(Ⅰ)求直线与平面所成角的正弦;
(Ⅱ)在线段上是否存在点,使平面.若存在,确定点的位置;若不存在,说明理由.

查看答案和解析>>

同步练习册答案