分析 (1)根据图象求出A,T,求出ω,图象经过(0,1),求出φ,然后求f(x)的解析式.
(2)由2kπ-$\frac{π}{2}$≤$\frac{1}{2}$x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z可解得f(x)的单调递增区间是:[4kπ-$\frac{4π}{3}$,4kπ+$\frac{2π}{3}$],k∈Z,又x∈[-3π,3π],即可得解函数f(x)在区间[-3π,3π]上的单调递增区间.
解答 解:(1)解:(1)由题意可得:A=2,$\frac{T}{2}$=2π,T=4π,
∴ω=$\frac{2π}{T}$=$\frac{2π}{4π}$=$\frac{1}{2}$,
∴f(x)=2sin($\frac{1}{2}$x+φ),
∴f(0)=2sinφ=1,
由|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{6}$.
∴函数f(x)的解析式为:f(x)=2sin($\frac{1}{2}$x+$\frac{π}{6}$).
(2)∵由2kπ-$\frac{π}{2}$≤$\frac{1}{2}$x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z可解得f(x)的单调递增区间是:[4kπ-$\frac{4π}{3}$,4kπ+$\frac{2π}{3}$],k∈Z,
又∵x∈[-3π,3π],
∴解得函数f(x)在区间[-3π,3π]上的单调递增区间为:$[{-\frac{4}{3}π,\frac{2}{3}π}]和[{\frac{8}{3}π,3π}]$.
点评 本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的单调性,考查计算能力,视图能力,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | (-2,2) | B. | (5,7) | C. | (3,5) | D. | (1,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com