精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,-2).
(1)求函数f(x)的解析式; 
(2)求函数f(x)在区间[-3π,3π]上的单调递增区间.

分析 (1)根据图象求出A,T,求出ω,图象经过(0,1),求出φ,然后求f(x)的解析式.
(2)由2kπ-$\frac{π}{2}$≤$\frac{1}{2}$x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z可解得f(x)的单调递增区间是:[4kπ-$\frac{4π}{3}$,4kπ+$\frac{2π}{3}$],k∈Z,又x∈[-3π,3π],即可得解函数f(x)在区间[-3π,3π]上的单调递增区间.

解答 解:(1)解:(1)由题意可得:A=2,$\frac{T}{2}$=2π,T=4π,
∴ω=$\frac{2π}{T}$=$\frac{2π}{4π}$=$\frac{1}{2}$,
∴f(x)=2sin($\frac{1}{2}$x+φ),
∴f(0)=2sinφ=1,
由|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{6}$.
∴函数f(x)的解析式为:f(x)=2sin($\frac{1}{2}$x+$\frac{π}{6}$).
(2)∵由2kπ-$\frac{π}{2}$≤$\frac{1}{2}$x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z可解得f(x)的单调递增区间是:[4kπ-$\frac{4π}{3}$,4kπ+$\frac{2π}{3}$],k∈Z,
又∵x∈[-3π,3π],
∴解得函数f(x)在区间[-3π,3π]上的单调递增区间为:$[{-\frac{4}{3}π,\frac{2}{3}π}]和[{\frac{8}{3}π,3π}]$.

点评 本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的单调性,考查计算能力,视图能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=4sin2(x+$\frac{π}{4}$)-2$\sqrt{3}$cos2x+1,且给定条件p:$\frac{π}{4}$≤x≤$\frac{π}{2}$,又给定条件q:|f(x)-m|<2,且p是q的充分条件,则实数m的取值范围是(  )
A.(-2,2)B.(5,7)C.(3,5)D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$a={(0.3)^{\sqrt{3}}},b={log_{\sqrt{3}}}0.3,c={(\sqrt{3})^{0.3}}$,则a,b,c三个数用“<”连接表示为b<a<c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,△ABC是边长为1正三角形,CD=DA=$\frac{{\sqrt{3}}}{3}$,AC与BD的交点为M,点N在线段PB上,且PN=$\frac{1}{2}$.若二面角A-BC-P的正切值为2$\sqrt{2}$.
(I)求证:MN∥平面PDC;
(Ⅱ)求平面DCP与平面ABP所成的锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某校1000名学生期中考试数学成绩的频率分布直方图如右图所示,其中成绩分组区间是:[50,60),[60,70),[70,
80),[80,90),[90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这1000名学生数学成绩的平均分;
(3)若数学成绩在区间[72,88]上的评为良好,在88分以上的评为优秀,试估计该校约有多少学生的数学成绩可评为良好,多少评为优秀?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.有一个棱长为1的正方体,对称中心在原点且每一个面都平行于坐标平面,给出以下各点:A(1,0,1),B(-1,0,1),C($\frac{1}{3}$,$\frac{1}{3}$,$\frac{1}{5}$),D($\frac{1}{5}$,$\frac{1}{2}$,$\frac{1}{2}$),E($\frac{2}{5}$,-$\frac{1}{2}$,0),F(1,$\frac{1}{2}$,$\frac{1}{3}$),则位于正方体之外的点是A,B,F.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2x+alnx.
(1)求函数f(x)的单调递增区间;
(2)若不等式f(x)≥(a+3)x在(0,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在正项数列{an}中,a1=$\frac{1}{3}$,an+1=an+($\frac{{a}_{n}}{n}$)2(n∈N*
(1)判断数列{an}的单调性,并证明你的结论;
(2)求证:对n∈N*都有:$\frac{1}{3}$≤an<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=x+a|x-1|在(0,+∞)上有最大值,则实数a的取值范围是(-∞,-1].

查看答案和解析>>

同步练习册答案