(±¾Ð¡ÌâÂú·Ö18·Ö)ÒÑÖªÊýÁУûan£ý¡¢£ûbn£ý¡¢£ûcn£ýµÄͨÏʽÂú×ãbn=an+1-an£¬cn=bn+1-bn£¨n¡ÊN*?£©£¬ÈôÊýÁУûbn£ýÊÇÒ»¸ö·ÇÁã³£ÊýÁУ¬Ôò³ÆÊýÁУûan£ýÊÇÒ»½×µÈ²îÊýÁУ»ÈôÊýÁУûcn£ýÊÇÒ»¸ö·ÇÁã³£ÊýÁУ¬Ôò³ÆÊýÁУûan£ýÊǶþ½×µÈ²îÊýÁÐ?(1)ÊÔд³öÂú×ãÌõ¼þa£±£½£±,b1=1£¬cn=1£¨n¡ÊN*?£©µÄ¶þ½×µÈ²îÊýÁУûan£ýµÄÇ°ÎåÏ(2)ÇóÂú×ãÌõ¼þ(1)µÄ¶þ½×µÈ²îÊýÁУûan£ýµÄͨÏʽan£»(3)ÈôÊýÁУûan£ýÊ×Ïîa£±£½£²£¬ÇÒÂú×ãcn-bn+1+3an£½-2n+1£¨n¡ÊN*?£©£¬ÇóÊýÁУûan£ýµÄͨÏʽ

£¨1£©a1=1£¬a2=2£¬a3=4£¬a4=7£¬a5=11£¨2£©an£½(n2-n+2)/2  £¨3£©an=4n-2n


½âÎö:

£¨1£©a1=1£¬a2=2£¬a3=4£¬a4=7£¬a5=11-----4·Ö

£¨2£©ÒÀÌâÒâbn+1-bn=cn=1£¬n=1£¬2£¬3£¬¡­

ËùÒÔbn=£¨bn-bn-1£©£«£¨bn-1-bn-2£©£«£¨bn-2-bn-3£©£«¡­+£¨b2-b1£©+b1=1+1+1+¡­+1=n   ---6·Ö

ÓÖan+1-an=bn£½n£¬n=1£¬2£¬3£¬¡­ËùÒÔan£½£¨an-an-1£©£«£¨an-1-an-2£©£«£¨an-2-an-3£©£«¡­+£¨a2-a1£©£«a£±

=£¨n-1£©+£¨n-2£©+¡­+2+1+1=n£¨n-1£©/2+1=(n2-n+2)/2  --10·Ö

£¨3£©ÓÉÒÑÖªcn-bn+1£«£³an= -2n+1£¬¿ÉµÃbn+1-bn-bn+1+3an£½-2n+1£¬¼´bn-3an=2n+1£¬¡àan+1=4an+2n+1£® -12·Ö

½â·¨Ò»£ºÕûÀíµÃ£ºan+1£«£²n+1=4£¨an+2n£©£¬-------15·Ö

Òò¶øÊýÁУûan+2n£ýÊÇÊ×ÏîΪa1+2=4£¬¹«±ÈΪ4µÄµÈ±ÈÊýÁУ¬

¡àan+2n£½4¡¤4n-1£½£´n£¬¼´an=4n-2n£®£¨18·Ö£©

½â·¨¶þ£ºÔÚµÈʽan+1£½4an+2n+1Á½±ßͬʱ³ýÒÔ2n+1µÃ£ºan+1/£²n+1=2¡¤an/2n£«£±£®----15·Ö

Áîkn=an/2n£¬Ôòkn+1£½£²kn+1£¬¼´kn+1£«£±£½£²£¨kn+1£©

¹ÊÊýÁУûkn+1£ýÊÇÊ×ÏîΪ2£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁÐËùÒÔkn+1=2¡¤2n-1£½£²n£¬¼´kn=2n-1£®

¡àan=2nkn=2n£¨£²n-1£©=4n-2n£® -------18·Ö

½â·¨Èý£º¡ßa£±£½£²£¬¡àa2£½£±£²£½£²£²¡Á£¨2£²-1£©£¬a3£½£µ£¶£½£²£³¡Á£¨£²£³-1£©£¬a4£½£³£²£½£²£´¡Á£¨£²£´-1£©

²ÂÏ룺an=2n£¨2n-1£©£½£´n-2n£® ------15·Ö

ÏÂÃæÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷ÈçÏ£º£¨i£©µ±n=1ʱ£¬a£±£½£²£½4-2£¬²ÂÏë³ÉÁ¢£»

£¨ii£©¼ÙÉèn=kʱ£¬²ÂÏë³ÉÁ¢£¬¼´ak=4k-2k£®ÄÇôµ±n=k+1ʱ£¬ak+1£½£´ak+2k+1£½£´£¨4k-2k£©£«£²k+1=4 k+1-2 k+1£¬½áÂÛÒ²³ÉÁ¢¡àÓÉ£¨i£©¡¢£¨ii£©¿ÉÖª£¬an=4n-2n£®----18·Ö

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨±¾Ð¡ÌâÂú·Ö18·Ö£©Èçͼ£¬½«Ô²·Ö³É¸öÉÈÐÎÇøÓò£¬ÓÃ3ÖÖ²»Í¬ÑÕÉ«¸øÿһ¸öÉÈÐÎÇøÓòȾɫ£¬ÒªÇóÏàÁÚÇøÓòÑÕÉ«»¥Ò죬°Ñ²»Í¬µÄȾɫ·½·¨ÖÖÊý¼ÇΪ¡£Çó

£¨¢ñ£©£»

£¨¢ò£©ÓëµÄ¹Øϵʽ£»

£¨¢ó£©ÊýÁеÄͨÏʽ£¬²¢Ö¤Ã÷¡£

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2015½ì¹ã¶«ÉÇÍ·´ïå©ÖÐѧ¸ßÒ»ÉÏÆÚÄ©ÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

£¨±¾Ð¡ÌâÂú·Ö18·Ö£©Öªº¯ÊýµÄͼÏóµÄÒ»²¿·ÖÈçÏÂͼËùʾ¡£

£¨1£©Çóº¯ÊýµÄ½âÎöʽ£»

£¨2

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011-2012ѧÄêÉϺ£Êг¤ÄþÇø¸ßÈý½ÌѧÖÊÁ¿²âÊÔÀí¿ÆÊýѧ ÌâÐÍ£º½â´ðÌâ

(±¾Ð¡ÌâÂú·Ö18·Ö) ±¾Ìâ¹²ÓÐ3¸öСÌ⣬µÚ1СÌâÂú·Ö4·Ö£¬µÚ2СÌâÂú·Ö6·Ö£¬µÚ3СÌâÂú·Ö8·Ö.

£¨ÎÄ£©ÒÑÖªÊýÁÐÖУ¬

£¨1£©ÇóÖ¤ÊýÁв»ÊǵȱÈÊýÁУ¬²¢Çó¸ÃÊýÁеÄͨÏʽ£»

£¨2£©ÇóÊýÁеÄÇ°ÏîºÍ£»

£¨3£©ÉèÊýÁеÄÇ°ÏîºÍΪ£¬Èô¶ÔÈÎÒâºã³ÉÁ¢£¬ÇóµÄ×îСֵ.

 

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011-2012ѧÄêÉϺ£Êг¤ÄþÇø¸ßÈý½ÌѧÖÊÁ¿²âÊÔÀí¿ÆÊýѧ ÌâÐÍ£º½â´ðÌâ

±¾Ð¡ÌâÂú·Ö18·Ö) ±¾Ìâ¹²ÓÐ3¸öСÌ⣬µÚ1СÌâÂú·Ö4·Ö£¬µÚ2СÌâÂú·Ö6·Ö£¬µÚ3СÌâÂú·Ö8·Ö.

É躯ÊýÊǶ¨ÒåÓòΪRµÄÆ溯Êý£®

£¨1£©ÇókÖµ£»

£¨2£©£¨ÎÄ£©µ±Ê±£¬ÊÔÅжϺ¯Êýµ¥µ÷ÐÔ²¢Çó²»µÈʽf(x2£«2x)£«f(x£­4)>0µÄ½â¼¯£»

£¨Àí£©Èôf(1)<0£¬ÊÔÅжϺ¯Êýµ¥µ÷ÐÔ²¢Çóʹ²»µÈʽºã³ÉÁ¢µÄµÄÈ¡Öµ·¶Î§£»

£¨3£©Èôf(1)£½£¬ÇÒg(x)£½a 2x£«a - 2x£­2m f(x) ÔÚ[1£¬£«¡Þ)ÉϵÄ×îСֵΪ£­2£¬ÇómµÄÖµ£®

 

 

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸