精英家教网 > 高中数学 > 题目详情
已知抛物线C:y2=2px(p>0)的焦点F和椭圆的右焦点重合,直线过点F交抛物线于A、B两点.
(1)求抛物线C的方程;
(2)若直线交y轴于点M,且,m、n是实数,对于直线,m+n是否为定值?
若是,求出m+n的值;否则,说明理由.
(1);(2)-1

试题分析:(1)因为椭圆的右焦点为,又因为抛物线C:y2=2px(p>0)的焦点F为.即可求出的值,从而得到抛物线的方程.
(2)假设直线方程以及.联立椭圆方程,消元得到一个关于x的一元二次方程,由韦达定理可得两个等式.根据由向量的相等关系,可得到关于m,n的等式,结合韦达定理的等式,再运算m+n即可得到结论.
试题解析:(1)∵椭圆的右焦点
,得
∴抛物线C的方程为
(2)由已知得直线的斜率一定存在,所以设与y轴交于
设直线交抛物线于
 

又由 
即m=,同理,∴ 
所以,对任意的直线,m+ n为定值-1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C: (a>b>0)的离心率为,且椭圆C上一点与两个焦点F1,F2构成的三角形的周长为2+2.
(1)求椭圆C的方程;
(2)过右焦点F2作直线l 与椭圆C交于A,B两点,设,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆经过点,其左、右顶点分别是,左、右焦点分别是(异于)是椭圆上的动点,连接交直线两点,若成等比数列.

(1)求此椭圆的离心率;
(2)求证:以线段为直径的圆过点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知离心率为的椭圆的顶点恰好是双曲线的左右焦点,点是椭圆上不同于的任意一点,设直线的斜率分别为.
(1)求椭圆的标准方程;
(2)当,在焦点在轴上的椭圆上求一点Q,使该点到直线(的距离最大。
(3)试判断乘积“(”的值是否与点(的位置有关,并证明你的结论;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,F1F2分别为椭圆C的左、右两个焦点,AB为两个顶点,该椭圆的离心率为的面积为.

(1)求椭圆C的方程和焦点坐标;
(2)作与AB平行的直线交椭圆于PQ两点,,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的焦点在轴上,离心率为,对称轴为坐标轴,且经过点
(1)求椭圆的方程;
(2)直线与椭圆相交于两点, 为原点,在上分别存在异于点的点,使得在以为直径的圆外,求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的中心在原点、焦点在轴上,抛物线的顶点在原点、焦点在轴上.小明从曲线上各取若干个点(每条曲线上至少取两个点),并记录其坐标(.由于记录失误,使得其中恰有一个点既不在椭圆上,也不在抛物线上,小明的记录如下:














据此,可推断椭圆的方程为            

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆C:+y2=1的两焦点为F1,F2,点P(x0,y0)满足≤1,则PF1+PF2的取值范围为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

F1,F2是椭圆+y2=1的左右焦点,点P在椭圆上运动.则的最大值是________.

查看答案和解析>>

同步练习册答案