精英家教网 > 高中数学 > 题目详情
4.数列的通项公式是an=4n-1,则a6等于(  )
A.21B.22C.23D.24

分析 根据数列的通项公式,直接进行求解即可.

解答 解:∵通项公式是an=4n-1,
∴a6=4×6-1=24-1=23,
故选:C

点评 本题主要考查数列通项公式的应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.在△ABC中,B=30°,C=45°,则$\frac{a+c}{b}$=$\frac{\sqrt{6}+3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xoy中,曲线C1:$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2$\sqrt{3}$cosθ.
(Ⅰ)求C2与C3交点的直角坐标;
(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若a、b是正常数,a≠b,x、y∈(0,+∞),则$\frac{{a}^{2}}{x}$+$\frac{{b}^{2}}{y}$≥$\frac{{(a+b)}^{2}}{x+y}$,当且仅当$\frac{a}{x}$=$\frac{b}{y}$时上式取等号.利用以上结论,可以得到函数f(x)=$\frac{4}{x}$+$\frac{9}{1-2x}$(x∈(0,$\frac{1}{2}$))的最小值为17+12$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,$\overrightarrow{AD}=\frac{1}{4}\overrightarrow{AB}$,DE∥BC,且与边AC相交于点E,△ABC的中线AM与DE相交于点N,设$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}$=$\overrightarrow b$,用$\overrightarrow a,\overrightarrow b$表示向量$\overrightarrow{ME}$=$-\frac{1}{2}\overrightarrow{a}-\frac{1}{4}\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.不等式x2-12<x的解是(-3,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,已知圆(x-2)2+y2=$\frac{4}{9}$是椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的内接△ABC的内切圆,其中A为椭圆C的左顶点,且椭圆C的离心率为$\frac{{\sqrt{15}}}{4}$,则此椭圆的标准方程为$\frac{x^2}{16}+{y^2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=Asin(ωx+φ)(0<φ<π)在一个周期内的图象如图,此函数的解析式为y=2sin(2x+$\frac{2π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若f(x)=2tanx-$\frac{2si{n}^{2}x-1}{sin\frac{x}{2}cos\frac{x}{2}}$,则f($\frac{π}{12}$)的值是8.

查看答案和解析>>

同步练习册答案