精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线与直线相切于点,点关于轴对称.

1)求抛物线的方程及点的坐标;

2)设轴上两个不同的动点,且满足,直线与抛物线的另一个交点分别为试判断直线与直线的位置关系,并说明理由.如果相交,求出的交点的坐标.

【答案】1;(2,详见解析.

【解析】

1)联立方程组,整理得,根据,求得,得到抛物线的方程,进而得到点的坐标,从而求得点的坐标.

2)设,直线的方程为,得出的方程为

代入,求得,进而得到,代入抛物线的方程求得的坐标,利用斜率公式,即可得到结论.

1)由题意,抛物线与直线相切于点

联立方程组,消去,得

所以,解得

,解得,所以抛物线的方程为

,得,所以切点为

因为点关于轴对称,点的坐标

2)直线,理由如下:

依题意,直线的斜率不为

,直线的方程为

由(1)知点,则,所以直线的方程为

代入,解得(),所以

因为,所以关于对称,得

同理得的方程为,代入

直线的斜率为,因此

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)若当取得极值,求a的值及的单调区间;

(Ⅱ)若存在两个极值点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形的边长为12交于点,将菱形沿对角线折起,得到三棱锥,点是棱的中点,

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与椭圆相交于点M01),N0-1),且椭圆的离心率为.

1)求的值和椭圆C的方程;

2)过点M的直线交圆O和椭圆C分别于AB两点.

①若,求直线的方程;

②设直线NA的斜率为,直线NB的斜率为,问:是否为定值? 如果是,求出定值;如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线的左顶点为D,且以点D为圆心的圆与双曲线C分别相交于点AB,如图所示.

1)求双曲线C的方程;

2)求的最小值,并求出此时圆D的方程;

3)设点P为双曲线C上异于点AB的任意一点,且直线PAPB分别与x轴相交于点MN,求证:为定值(其中O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,过点且与轴垂直的直线被椭圆截得的线段长为,且与短轴两端点的连线相互垂直.

1)求椭圆的方程;

2)若圆上存在两点,椭圆上存在两个点满足:三点共线,三点共线,且,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设点,直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇迹之一,其中较为著名的是胡夫金字塔.令人吃惊的并不仅仅是胡夫金字塔的雄壮身姿,还有发生在胡夫金字塔上的数字“巧合”.如胡夫金字塔的底部周长如果除以其高度的两倍,得到的商为3.14159,这就是圆周率较为精确的近似值.金字塔底部形为正方形,整个塔形为正四棱锥,经古代能工巧匠建设完成后,底座边长大约230米.因年久风化,顶端剥落10米,则胡夫金字塔现高大约为( )

A.128.5米B.132.5米C.136.5米D.110.5米

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的短轴长为2,离心率为,左顶点为A,过点A的直线lC交于另一个点M,且与直线xt交于点N

1)求椭圆C的方程;

2)是否存在实数t,使得为定值?若存在,求实数t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案