精英家教网 > 高中数学 > 题目详情

【题目】如下图中六个区域进行染色,每个区域只染一种颜色,每个区域只染一种颜色,且相邻的区域不同色.若有种颜色可供选择,则共有_________种不同的染色方案.

【答案】

【解析】

通过分析题目给出的图形,可知要完成给出的图形中六个区域进行染色,最少需要种颜色,即同色,同色,同色,由排列知识可得该类染色方法的种数;也可以种颜色全部用上,即三组中有一组不同色,同样利用排列组合知识求解该类染色方法的种数,最后利用分类加法求和即可.

要完成给出的图形中六个区域进行染色,

染色方法分为两类,第一类是仅用三种颜色染色,

同色,同色,同色,即从四种颜色中取三种颜色,有种取法,三种颜色染三个区域有种染法,共种染法;

第二类是用四种颜色染色,即三组中有一组不同色,则有种方案(不同色或不同色或不同色),

先从四种颜色中取两种染同色区域有种染法,剩余两种染在不同色区域有种染法,

共有种染法.

由分类加法原理可得总的染色方法种数为(种).

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某医务人员说:包括我在内,我们社区诊所医生和护士共有16.无论是否把我算在内,下面说法都是对的.在这些医务人员中:护士多于医生;女医生多于女护士;女护士多于男护士;至少有一名男医生.”请你推断说话的人的性别与职业是(

A.男医生B.女医生C.男护士D.女护士

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数且在上的最大值为

1)求函数f(x)的解析式;

(2)判断函数f(x)在(0π)内的零点个数,并加以证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知顶点为原点的抛物线C的焦点与椭圆的上焦点重合,且过点.

1)求椭圆的标准方程;

(2)若抛物线上不同两点AB作抛物线的切线,两切线的斜率,若记AB的中点的横坐标为mAB的弦长,并求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的普通方程为.在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为

1)写出圆的参数方程和直线的直角坐标方程;

2)设点上,点Q在上,求的最小值及此时点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.其中.

1)讨论函数的单调性;

2)函数处存在极值-1,且时,恒成立,求实数的最大整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】河北省高考综合改革从2018年秋季入学的高一年级学生开始实施,新高考将实行“3+1+2”模式,其中3表示语文、数学、外语三科必选,1表示从物理、历史两科中选择一科,2表示从化学、生物、政治、地理四科中选择两科.某校2018级入学的高一学生选科情况如下表:

选科组合

物化生

物化政

物化地

物生政

物生地

物政地

史政地

史政化

史生政

史地化

史地生

史化生

合计

130

45

55

30

25

15

30

10

40

10

15

20

425

100

45

50

35

35

35

40

20

55

15

25

20

475

合计

230

90

105

65

60

50

70

30

95

25

40

40

900

1)完成下面的列联表,并判断是否在犯错误概率不超过0.01的前提下,认为“选择物理与学生的性别有关”?

2)以频率估计概率,从该校2018级高一学生中随机抽取3名同学,设这三名同学中选择物理的人数为,求的分布列和数学期望.

选择物理

不选择物理

合计

425

475

合计

900

附表及公式:

0.150

0.100

0.050

0.010

2.072

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为参数).直线的参数方程为参数).

)求曲线在直角坐标系中的普通方程;

)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,当曲线截直线所得线段的中点极坐标为时,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过其焦点的直线与抛物线相交于两点,满足.

1)求抛物线的方程;

2)已知点的坐标为,记直线的斜率分别为,求的最小值.

查看答案和解析>>

同步练习册答案