精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别为,过点的直线与椭圆交于两点,延长交椭圆于点的周长为8.

(1)求的离心率及方程;

(2)试问:是否存在定点,使得为定值?若存在,求;若不存在,请说明理由.

【答案】(1),; (2)存在点,且.

【解析】

(1)由已知条件得即可计算出离心率和椭圆方程

(2)假设存在点,分别求出直线的斜率不存在、直线的斜率存在的表达式,令其相等,求出结果

(1)由题意可知,,则

的周长为8,所以,即

.

的方程为.

(2)假设存在点,使得为定值.

若直线的斜率不存在,直线的方程为

.

若直线的斜率存在,设的方程为

设点,联立,得

根据韦达定理可得:

由于

因为为定值,所以

解得,故存在点,且.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 .

讨论的单调性;

,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆上一点A关于原点的对称点为B,F为椭圆的右焦点,AF⊥BF,∠ABF=,则椭圆的离心率的取值范围为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为,准线为是抛物线上的两个动点,且满足.设线段的中点上的投影为,则的最大值是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求在区间上的最值;

(2)讨论函数的单调性;

(3)当时,有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数).

(1)求的直角坐标方程;

(2)若曲线截直线所得线段的中点坐标为,求的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1时,解关于x的不等式

2)若不等式对任意恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点

(1)求的取值范围;

(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求与直线3x4y70垂直,且与原点的距离为6的直线方程;

(2)求经过直线l12x3y50l27x15y10的交点,且平行于直线x2y30的直线方程.

查看答案和解析>>

同步练习册答案