精英家教网 > 高中数学 > 题目详情
如图所示的是某池塘中的浮萍蔓延的面积与时间(月)的关系:,有以下叙述:① 这个指数函数的底数是2;②第5个月的浮萍的面积就会超过;③浮萍从蔓延到需要经过1.5个月;④浮萍每个月增加的面积都相等;⑤若浮萍蔓延到所经过的时间分别为,则.其中正确的是(   )
A.①②B.①②⑤C.①②③④D.②③④⑤
B

专题:计算题;数形结合.
分析:本题考查的是函数模型的选择和应用问题.在解答时,首先应该仔细观察图形,结合图形读出过的定点进而确定函数解析式,结合所给月份计算函数值从而获得相应浮萍的面积进而对问题作出判断,至于第⑤要充分结合对数运算的运算法则进行计算验证.
解答:解:∵点(1,2)在函数图象上,
∴2=a1∴a=2,故①正确;
∴函数y=2t在R上是增函数,且当t=5时,y=32故②正确,
4对应的t=2,经过1.5月后面积是23.5<12,故③不正确;
如图所示,1-2月增加2m2,2-3月增加4m2,故④不正确.
对⑤由于:2=2 x1,3=2 2,6=2 x3
∴x1=1,x2=log23,x3=log26
又因为1+log23=log22+log23=log22×3=log26
∴若浮萍蔓延到2m2、3m2、6m2所经过的时间分别为x1,x2,x3,则x1+x2=x3成立.
故答案为:①②⑤.
点评:本题考查的是函数模型的选择和应用问题、数形结合法.在解答的过程当中充分体现了观察图形、分析图形和利用图形的能力,同时对数求值和对数运算的能力也得到了体现.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)一只小船以10 m/s的速度由南向北匀速驶过湖面,在离湖面高20米的桥上,一辆汽车由西向东以20 m/s的速度前进(如图),现在小船在水平面P点以南的40米处,汽车在桥上Q点以西30米处(其中PQ⊥水面),求小船与汽车间的最短距离(不考虑汽车与小船本身的大小).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本小题满分12分)
某公司为了实现2011年1000万元利润的目标,准备制定一个激励销售人员的奖励方案:
销售利润达到10万元时,按销售利润进行奖励,且奖金数额(单位:万元)随销售利润(单位:万元)的增加而增加,但奖金数额不超过5万元,同时奖金数额不超过利润的,现有三个奖励模型:,问其中是否有模型能完全符合公司的要求?说明理由.(参考数据:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题13分)
某公司要将一批不易存放的蔬菜从A地运到B 地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如下表:
运输工具
途中速度
(km/h)
途中费用
(元/km)
装卸时间
(h)
装卸费用
(元)
汽车
50
8
2
1000
火车
100
4
4
2000
若这批蔬菜在运输过程(含装卸时间)中损耗为300元/h,设A、B 两地距离为km
(I)设采用汽车与火车运输的总费用分别为,求
(II)试根据A、B两地距离大小比较采用哪种运输工具比较好(即运输总费用最小).
(注:总费用=途中费用+装卸费用+损耗费用)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

根据所给的数据表,判定函数的一个零点所在的区间为 (    )


0
1
2
3

0.37
1
2.72
7.39
20.39
 
A.        B.        C.          D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分,第1小题满分6分,第2小题满分10分)
已知
(1) 时,求的值域;
(2) 时,的最大值为M,最小值为m,且满足:,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
已知函数,且对于任意R,恒有
(1)证明:
(2)设函数满足:,证明:函数内没有零点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题


若关于的方程有一正一负两实根,实数取值范围__

查看答案和解析>>

同步练习册答案