精英家教网 > 高中数学 > 题目详情
如图所示,在四棱锥中,底面为矩形,平面,点在线段上,平面.

(Ⅰ)证明:平面;
(Ⅱ)若,,求二面角的正切值.
(1)对于线面垂直的证明,一般要通过线线垂直来分析证明,关键是对于
(2)3

试题分析:解析:(Ⅰ)因为平面,平面,所以.又因为平面,平面,所以.而,平面,平面,所以平面.                                 
5分 
(Ⅱ)由(Ⅰ)可知平面,而平面,所以,而为矩形,所以为正方形,于是.
法1:以点为原点,轴、轴、轴,建立空间直角坐标系.则,于是,.设平面的一个法向量为,则,从而,令,得.而平面的一个法向量为.所以二面角的余弦值为,于是二面角的正切值为3.                                      13分
法2:设交于点,连接.因为平面,平面,平面,所以,,于是就是二面角的平面角.又因为平面,平面,所以是直角三角形.由可得,而,所以,,而,所以,于是,而,于是二面角的正切值为.
点评:主要是考查了空间几何体中线面垂直的证明,以及二面角的平面角的求解,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图在棱长为1的正方体中,M,N分别是线段和BD上的点,且AM=BN=

(1)求||的最小值;
(2)当||达到最小值时,是否都垂直,如果都垂直给出证明;如果不是都垂直,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1, 在直角梯形中, 为线段的中点. 将沿折起,使平面平面,得到几何体,如图2所示.
(1)求证:平面
(2)求二面角的余弦值.   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本大题12分)如图,在棱长为ɑ的正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点.
(1)求直线C与平面ABCD所成角的正弦的值;
(2)求证:平面A B1D1∥平面EFG;
(3)求证:平面AA1C⊥面EFG .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱柱ABCA1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于(  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,,点的中点.

(1)求异面直线所成角的余弦值;
(2)求平面与平面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。

(I)求棱PB的长;
(II)求二面角P—AB—C的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点P是正方形ABCD外一点,PA平面ABCD,PA=AB=2,且E、F分别是AB、PC的中点.
(1)求证:EF//平面PAD;
(2)求证:EF平面PCD;
(3)求:直线BD与平面EFC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC—A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1,A1A的中点;

(1)求
(2)求
(3)
(4)求CB1与平面A1ABB1所成的角的余弦值.

查看答案和解析>>

同步练习册答案