精英家教网 > 高中数学 > 题目详情

【题目】已知直线的极坐标方程为,曲线的参数方程为为参数)

(Ⅰ)求直线的直角坐标方程和曲线的普通方程;

)若过且与直线垂直的直线与曲线相交于两点,求.

【答案】

【解析】

(Ⅰ)根据极坐标与直角坐标的互化公式,即可求得直线的直角坐标方程,消去参数,即可求得曲线的普通方程;

(Ⅱ)求得直线的参数方程,代入椭圆的方程,利用直线参数的几何意义,即可求解.

(Ⅰ)由直线极坐标方程为

根据极坐标与直角坐标的互化公式,可得直线直角坐标方程:

由曲线的参数方程为为参数),则

整理得,即椭圆的普通方程为

(Ⅱ)直线的参数方程为,即为参数)

把直线的参数方程代入得:

故可设是上述方程的两个实根,则有

又直线过点,故由上式及的几何意义得:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)记,求的最小值;

(2)若有三个不同的零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个体户计划经销AB两种商品,据调查统计,当投资额为x(x≥0)万元时,在经销AB商品中所获得的收益分别为f(x)万元与g(x)万元,其中f(x)=a(x-1)+2,g(x)=6ln(xb)(a>0,b>0).已知投资额为零时收益为零.

(1)ab的值;

(2)如果该个体户准备投入5万元经销这两种商品,请你帮他制定一个资金投入方案,使他能获得最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若f (x)在区间(-∞,2)上为单调递增函数,求实数a的取值范围;

(2)若a=0,x0<1,设直线y=g(x)为函数f (x)的图象在x=x0处的切线,求证:f (x)≤g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知O为坐标原点,向量,点P满足

)记函数·,求函数的最小正周期;

)若OPC三点共线,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济模式的改变,微商和电商已成为当今城乡一种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,没售出1吨该商品可获利润0.5万元,未售出的商品,每1吨亏损0.3万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如图所示.已知电商为下一个销售季度筹备了130吨该商品,现以(单位:吨,)表示下一个销售季度的市场需求量,(单位:万元)表示该电商下一个销售季度内经销该商品获得的利润.

(Ⅰ)视分布在各区间内的频率为相应的概率,求

Ⅱ)将表示为的函数,求出该函数表达式;

Ⅲ)在频率分布直方图的市场需求量分组中,以各组的区间中点值(组中值代表该组的各个值,并以市场需求量落入该区间的频率作为市场需求量取该组中值的概率(例如则取的概率等于市场需求量落入的频率),的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是二次函数,不等式<0的解集是(05),且在区间[14]上的最大值是12

1)求的解析式.

2)作出二次函数y= [14]上的图像并求出值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】未来创造业对零件的精度要求越来越高.打印通常是采用数字技术材料打印机来实现的,常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件.该技术应用十分广泛,可以预计在未来会有发展空间.某制造企业向高校打印实验团队租用一台打印设备,用于打印一批对内径有较高精度要求的零件.该团队在实验室打印出了一批这样的零件,从中随机抽取个零件,度量其内径的茎叶图如图(单位:).

(1)计算平均值与标准差

(2)假设这台打印设备打印出品的零件内径服从正态分布,该团队到工厂安装调试后,试打了个零件,度量其内径分别为(单位:):,试问此打印设备是否需要进一步调试?为什么?

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆F和抛物线,过F的直线与抛物线和圆依次交于ABCD四点,求的值是( )

A.1B.2C.3D.无法确定

查看答案和解析>>

同步练习册答案