分析 令f(x)=x2-2tx+t2-1,若方程x2-2tx+t2-1=0的两个根中的一个根在(-2,0)内,另一个根在(1,2)内,即$\left\{\begin{array}{l}f(-2)>0\\ f(0)<0\\ f(1)<0\\ f(2)>0\end{array}\right.$,解得答案.
解答 解:令f(x)=x2-2tx+t2-1,
若方程x2-2tx+t2-1=0的两个根中的一个根在(-2,0)内,另一个根在(1,2)内,
则$\left\{\begin{array}{l}f(-2)>0\\ f(0)<0\\ f(1)<0\\ f(2)>0\end{array}\right.$,即$\left\{\begin{array}{l}{t}^{2}+4t+3>0\\{t}^{2}-1<0\\{t}^{2}-2t<0\\{t}^{2}-4t+3>0\end{array}\right.$,
解得:t∈(0,1),
故答案为:(0,1).
点评 本题考查的知识点是二次函数的性质,函数的零点与方程的根,难度中档.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {0,1} | B. | {0,1,2} | C. | {2,3} | D. | {1,2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com