【题目】已知函数在与处都取得极值.
(1)求的值及函数的单调区间;
(2)若对,不等式恒成立,求的取值范围.
【答案】(1),的减区间为,增区间为;(2).
【解析】
求出并令得到方程,把和代入即可求出的值,判断出导函数的符号,即可得到函数的单调区间
求出函数的最大值为,要使不等式恒成立,即要证明,即可求出的取值范围
(1)f′(x)=3x2+2ax+b,由题意得
即
解得
∴f(x)=x3-x2-6x+c,f′(x)=3x2-3x-6.
令f′(x)<0,解得-1<x<2;
令f′(x)>0,解得x<-1或x>2.
∴f(x)的减区间为(-1,2),增区间为(-∞,-1),(2,+∞).
(2)由(1)知,f(x)在(-∞,-1)上单调递增;在(-1,2)上单调递减;在(2,+∞)上单调递增.
∴x∈[-2,3]时,f(x)的最大值即为f(-1)与f(3)中的较大者.
f(-1)=+c,f(3)=-+c.
∴当x=-1时,f(x)取得最大值.
要使f(x)+c<c2,
只需c2>f(-1)+c,
即2c2>7+5c,解得c<-1或c>.
∴c的取值范围为(-∞,-1)∪(,+∞).
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)当a=2时,求不等式f(x)<g(x)的解集;
(2)设a> ,且当x∈[ ,a]时,f(x)≤g(x),求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设偶函数f(x)在[0,+∞)单调递增,则使得f(x)>f(2x﹣1)成立的x的取值范围是( )
A.( ,1)
B.(﹣∞, )∪(1,+∞)??
C.(﹣ , )
D.(﹣∞,﹣ )∪( ,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,四点,,,中恰有两个点为椭圆的顶点,一个点为椭圆的焦点.
(1)求椭圆的方程;
(2)若斜率为1的直线与椭圆交于不同的两点,且,求直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC中,a,b,c分别是角A、B、C的对边,向量 =(2sinB,2﹣cos2B), =(2sin2( + ),﹣1)且 ⊥ .
(1)求角B的大小;
(2)若a= ,b=1,求c的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(选修4-4 坐标系与参数方程) 以平面直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,设曲线C的参数方程为 (是参数),直线的极坐标方程为.
(1)求直线的直角坐标方程和曲线C的普通方程;
(2)设点P为曲线C上任意一点,求点P到直线的距离的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com