精英家教网 > 高中数学 > 题目详情
(13分)已知抛物线D的顶点是椭圆的中心,焦点与该椭圆的右焦点重合。
(1)求抛物线D的方程;
(2)已知动直线l过点P(4,0),交抛物线D于A,B两点
(i)若直线l的斜率为1,求AB的长;
(ii)是否存在垂直于x轴的直线m被以AP为直径的圆M所截得的弦长恒为定值?如果存在,求出m的方程,如果不存在,说明理由。
解:(1)y2=4x;(2)(i)|AB|=
(ii)存在直线m:x=3满足题意。
本题考查抛物线的标准方程,考查直线与抛物线的位置关系,考查弦长的计算,解题的关键是联立方程,利用韦达定理求解,属于中档题
(1)根据抛物线D的顶点是椭圆的中心,焦点与该椭圆的右焦点重合,设出抛物线方程,即可求得抛物线D的方程;
(2)设A(x1,y1),B(x2,y2).(i)直线l的方程代入抛物线方程,利用韦达定理可求|AB|;
(3) 设存在直线m:x=a满足题意,则圆心M(),过M作直线x=a的垂线,垂足为E,设直线m与圆M的一个交点为G,可得:|EG|2=|MG|2-|ME|2=(a-3)x1+4a-a2,由此可得结论.
解:(1)y2=4x(3分)
(i)A(x1,y1) B(x2,y2)  |AB|=(4分)
(ii)设存在直线m:x=a,满足题意,则圆心M,过M作直线x=a的垂线,垂足为E,设直线m与圆M的一个交点为G,可得|EG|2=|MG|2-|ME|2=(a-3)x1+4a-a2
当a=3时,弦长恒为定值2 因此存在直线m:x=3满足题意(6分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分) 如图,已知抛物线与坐标轴分别交于A、B、C三点,过坐标原点O的直线与抛物线交于M、N两点.分别过点C、D作平行于轴的直线.(1)求抛物线对应的二次函数的解析式;(2)求证:以ON为直径的圆与直线相切;(3)求线段MN的长(用表示),并证明M、N两点到直线的距离之和等于线段MN的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线上一点的横坐标为4,则点与抛物线焦点的距离为
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线,过点)作倾斜角为的直线,若与抛物线交于两点,弦的中点到y轴的距离为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的焦点坐标是                 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线y=x-1被抛物线y2=4x截得线段的中点坐标是______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知直线:交抛物线两点,为坐标原点.

(Ⅰ)求的面积;
(Ⅱ)设抛物线在点处的切线交于点,求点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一动点在轴的右侧运动,它到轴的距离比到点(2, 0)的距离小2,则此动点的运动轨迹方程
                               

查看答案和解析>>

同步练习册答案