精英家教网 > 高中数学 > 题目详情

【题目】从甲、乙两班各随机抽取10名同学,下面的茎叶图记录了这20名同学在2018年高考语文作文题目中的成绩(单位:分).已知语文作文题目满分为60分,“分数分,为及格;分数分,为高分”,若甲、乙两班的成绩的平均分都是44分,

(1)求的值;

(2)若分别从甲、乙两班随机各抽取1名成绩为高分的学生,求抽到的学生中,甲班学生成绩高于乙班学生成绩的概率.

【答案】(1) (2)

【解析】

(1)由平均数的计算公式,结合题中数据即可求出结果;

(1)用列举法列举“甲班学生成绩高于乙班学生成绩”所包含的基本事件,以及“分别从甲、乙两班随机各抽取1名成绩为高分的学生”所包含的基本事件总数,基本事件的个数比即是所求概率.

解:(1)因为甲的平均数为44,

所以,解得.

同理,因为乙的平均数为44.

所以,解得.

(2)甲班成绩不低于高分的学生成绩分别为48,50,52,56共4人,乙班成绩不低于高分的学生成绩分别为50,52,57,58共4人,记表示从甲、乙两班随机各抽取1名学生的成绩,其中前一个数表示从甲班随机抽取1名学生的成绩,后一个数表示从乙班随机抽取1名学生的成绩.

从甲、乙两班随机各抽取1名成绩为高分的学生,共有种情况;

其中,甲班学生成绩高于乙班学生成绩的有共3种;

故由古典概型得,抽到的学生中,甲班学生成绩高于乙班学生成绩的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了月份每月号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日期

昼夜温差

就诊人数(个)

16

该兴趣小组确定的研究方案是:先从这六组数据中选取组,用剩下的组数据求线性回归方程,再用被选取的组数据进行检验.

(1)求选取的2组数据恰好是相邻两个月的概率;

(2)若选取的是月与月的两组数据,请根据月份的数据,求出 关于的线性回归方程

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程是否理想?

参考公式:

img src="http://thumb.zyjl.cn/questionBank/Upload/2018/08/07/18/7f4fe67a/SYS201808071848019525920497_ST/SYS201808071848019525920497_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB分别为双曲线 (a>0,b>0)的左、右顶点,双曲线的实轴长为4,焦点到渐近线的距离为.

(1)求双曲线的方程;

(2)已知直线yx-2与双曲线的右支交于MN两点,且在双曲线的右支上存在点D,使,求t的值及点D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中,角所对的边分别是的面积为,且.

(1)求的值;

(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知非零复数;若满足.

1)求的值;

2)若所对应点在圆,求所对应的点的轨迹;

3)是否存在这样的直线对应点在上,对应点也在直线上?若存在,求出所有这些直线;若不存在,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的极值;

(2)①讨论函数的单调性;

②求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校的1000名高三学生参加四门学科的选拔考试,每门试卷共有10道题,每题10分,规定:每门错题成绩记为,错题成绩记为,错题成绩记为,错题成绩记为,在录取时,记为90分,记为80分,记为60分,记为50分.

根据模拟成绩,每一门都有如下统计表:

答错

题数

0

1

2

3

4

5

6

7

8

9

10

频数

10

90

100

150

150

200

100

100

50

49

1

已知选拔性考试成绩与模拟成绩基本吻合.

(1)设为高三学生一门学科的得分,求的分布列和数学期望;

(2)预测考生4门总分为320概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,且,其中分别是的中点,动点在线段上运动时,下列四个结论:①

其中恒成立的为(

A. ①③ B. ③④ C. ①④ D. ②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,定义两点之间的直角距离为:.现给出下列4个命题:

①已知,则为定值;

②已知三点不共线,则必有

③用表示两点之间的距离,则

④若是椭圆上的任意两点,则的最大值为6

则下列判断正确的为__________

查看答案和解析>>

同步练习册答案