精英家教网 > 高中数学 > 题目详情
13.如图,三棱锥P-ABC的体积为12,D为PB中点,且EF$\stackrel{∥}{=}$MN$\stackrel{∥}{=}$$\frac{1}{2}$AC,则三棱柱BEF-DMN的体积为$\frac{9}{2}$

分析 由条件可知E,F,M,N为棱锥P-ABC的对应边的中点,于是棱柱的底面积为棱锥底面积的$\frac{1}{4}$,高为棱锥的$\frac{1}{2}$.

解答 解:∵EF$\stackrel{∥}{=}$MN$\stackrel{∥}{=}$$\frac{1}{2}$AC,∴MN,EF为△PAC,△ABC的中位线,
∴S△BEF=$\frac{1}{4}{S}_{△ABC}$,D到平面ABC的距离h为P到底面距离的$\frac{1}{2}$.
∵VP-ABC=$\frac{1}{3}{S}_{△ABC}•2h=12$,∴S△ABC•h=18.
∴VBEF-DMN=S△BEF•h=$\frac{1}{4}{S}_{△ABC}•h$=$\frac{9}{2}$.
故答案为:$\frac{9}{2}$.

点评 本题考查了棱锥,棱柱的体积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1、F2,若椭圆上存在一点P使得∠F1PF2=90°,且|PF1|是|PF2|和|F1F2|的等差中项,则椭圆的离心率e为(  )
A.$\frac{5}{7}$B.$\frac{2}{3}$C.$\frac{4}{5}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.随机变量X的分布列如下,则m=(  )
X1234
P$\frac{1}{4}$m$\frac{1}{3}$$\frac{1}{6}$
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{6}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,三棱柱ABC-A1B1C1中,D,M分别为CC1和A1B的中点,A1D⊥CC1,侧面ABB1A1为菱形且∠BAA1=60°,AA1=A1D=2,BC=1,
(Ⅰ)证明:直线MD∥平面ABC;
(Ⅱ)求二面角B-AC-A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程是y=$\frac{4}{3}$x,则该双曲线的离心率是(  )
A.$\frac{5}{4}$B.$\frac{5}{3}$C.$\frac{7}{3}$D.$\frac{\sqrt{21}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.过双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的右焦点F作x轴的垂线,交双曲线于A、B两点,若双曲线的左顶点C在以AB为直径的圆的内部,则此双曲线离心率e的取值范围是(  )
A.($\frac{1+\sqrt{5}}{2},+∞$)B.($\frac{1+\sqrt{5}}{2},2$)C.(2,+∞)D.(1,$\frac{1+\sqrt{5}}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.P是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)上的一点,F1,F2是焦点,PF1与渐近线平行,∠F1PF2=90°,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.从重量分别为1,2,3,4,…,10,11克的砝码(每种砝码各一个)中选出若干个,使其总重量恰为9克的方法总数为m,下列各式的展开式中x9的系数为m的选项是(  )
A.(1+x)(1+x2)(1+x3)…(1+x11
B.(1+x)(1+2x)(1+3x)…(1+11x)
C.(1+x)(1+2x2)(1+3x3)…(1+11x11
D.(1+x)(1+x+x2)(1+x+x2+x3)…(1+x+x2+…+x11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直角梯形ABCD中,AD⊥AB,AB∥DC,AB=2,DC=3,E为AB的中点,将四边形AEFD沿EF折起使面AEFD⊥面EBCF,过E作EF∥AD,
(1)若G为DF的中点,求证:EG∥面BCD;
(2)若AD=2,试求多面体AD-BCFE体积.

查看答案和解析>>

同步练习册答案