精英家教网 > 高中数学 > 题目详情
12.函数f(x)=-tan($\frac{π}{3}$-2x)的单调递增区间是(  )
A.[$\frac{kπ}{2}$-$\frac{π}{12}$,$\frac{kπ}{2}$+$\frac{5π}{12}$](k∈Z)B.($\frac{kπ}{2}$-$\frac{π}{12}$,$\frac{kπ}{2}$+$\frac{5π}{12}$)(k∈Z)
C.(kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$)(k∈Z)D.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)

分析 根据正切函数的单调性进行求解.

解答 解:函数f(x)=-tan($\frac{π}{3}$-2x)=tan(2x-$\frac{π}{3}$),
由kπ-$\frac{π}{2}$<2x-$\frac{π}{3}$<kπ+$\frac{π}{2}$,k∈Z,
解得$\frac{kπ}{2}$-$\frac{π}{12}$<x<$\frac{kπ}{2}$+$\frac{5π}{12}$,
故函数f(x)的递增区间为
($\frac{kπ}{2}$-$\frac{π}{12}$,$\frac{kπ}{2}$+$\frac{5π}{12}$),k∈Z.
故选:B.

点评 本题主要考查了正切函数的单调性应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数y=asinx-bcosx图象的一条对称轴为$x=\frac{π}{3}$,那么$\frac{a}{b}$=(  )
A.$\sqrt{3}$B.1C.$-\sqrt{3}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知α,β,γ是三个不同的平面,l1,l2是两条不同的直线,下列命题是真命题的是(  )
A.若α⊥γ,β⊥γ,则α∥βB.若l1∥α,l1⊥β,则α∥β
C.若α∥β,l1∥α,l2∥β,则l1∥l2D.若α⊥β,l1⊥α,l2⊥β,则l1⊥l2
E.若α⊥β,l1⊥α,l2⊥β,则l1⊥l2F.若α⊥β,l1⊥α,l2⊥β,则l1⊥l2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知三点A(3,2),B(5,-3),C(-1,3),以P(2,-1)为圆心能否做一个圆,使A,B,C三点中一点在圆外,一点在圆上,一点在圆内?若存在,求出这个圆的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.三棱锥P-ABC中,面PBC和面ABC都是边长为12的正三角形,平面PBC和平面ABC所成二面角是60°,求点P到平面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\left\{\begin{array}{l}{{3}^{x-2},(x<2)}\\{lo{g}_{3}({x}^{2}-1),(x≥2)}\end{array}\right.$,若f(a)=1,则a的值是(  )
A.1或2B.1C.2D.1或-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数在区间[0,1]上单调递增的是(  )
A.y=|lnx|B.y=-lnxC.y=2-xD.y=2|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在1,3,5,8路公共汽车都要停靠的一个站(假定这个站只能停靠一辆公共汽车),有一位乘客等候1路或3路公共汽车,假定当时各路公共汽车首先到站的可能性相等,则首先到站的正好是这位乘客所要乘的公共汽车的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某同学在利用“五点法”作函数f(x)=Asin(ωx+ϕ)+t(其中A>0,$ω>0,|ϕ|<\frac{π}{2}$)的图象时,列出了如表格中的部分数据.
x$-\frac{π}{4}$        $\frac{π}{12}$        $\frac{5π}{12}$$\frac{3π}{4}$$\frac{13π}{12}$                     
ωx+ϕ0$\frac{π}{2}$π$\frac{3π}{2}$
f(x)2             6                2          -22
(1)请将表格补充完整,并写出f(x)的解析式.
(2)若$x∈[-\frac{5π}{12},\frac{π}{4}]$,求f(x)的最大值与最小值.

查看答案和解析>>

同步练习册答案