精英家教网 > 高中数学 > 题目详情
已知棱长等于2
3
的正方体ABCD-A1B1C1D1,它的外接球的球心为O,点E是AB的中点,点P是球O的球面上任意一点,有以下判断:①该正方体外接球的体积是36π;②异面直线OE与B1C所成角为90°;③PE长的最大值为3+
6
;④过点E的平面截球O的截面面积的最小值为6π.其中所有正确判断的序号是
①②③
①②③
分析:根据正方体外接圆的直径是正方体的体对角线可求外接圆的半径;当过球内一点E的截面与OE垂直时,截面面积最小可求截面半径;
球面上到球内一点距离最大时,是在球的直径的一个端点上等知识求解.
解答:解:∵外接球的半径R=
(2
3
)
2
+(2
3
)
2
+(2
3
)
2
2
=3,∴V=
4
3
π×27=36π,∴①√;
∵OE∥BC1,BC1⊥B1C,∴OE⊥B1C,∴②√;
∵当P、E、O在一条直线时,PE长最大,∴PE长的最大值是R+
(2
3
)
2
+(2
3
)
2
2
=3+
6
,∴③√;
∵当过点E的平面与OE垂直时,截面面积最小,r=
R2-|OE|2
=
3
,S=π×3=3π,∴④×;
 故答案是①②③
点评:本题考查空间几何体的体积、面积计算及接体问题,找准量化关系是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知球O在一个棱长为2
3
的正四面体内,如果球O是该正四面体的最大球,那么球O的表面积等于(  )
A、4
3
π
B、
4
3
π
3
C、2π
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四面体ABCD的棱长为23,球O与正四面体的各棱都相切,且球心O在正四面体的内部,则球O的表面积等于

A.4π                 B.6π                 C.12π                D.32π

查看答案和解析>>

同步练习册答案