【题目】如图所示,平面平面,四边形是边长为4的正方形,,,分别是,的中点.
(1)求证:平面;
(2)若直线与平面所成角等于,求二面角的余弦值.
【答案】(1)见解析;(2)
【解析】
(1)利用平行四边形判定法则,证明CN平行ME,然后结合直线与平面平行判定,即可。(2)建立直角坐标系,分别计算两平面的法向量,然后结合向量数量积,即可。
(1)取线段中点,连结,,因为,分别是、的中点,所以
且,
正方形中,是的中点.所以且,
所以且,
故四边形为平行四边形,
从而,
又因为平面,平面,所以平面.
(2)过作于,
因为平面平面,平面平面,平面,
所以平面,
又平面,从而为直线在平面内的射影,
故为直线与平面所成角,所以.
如图,以为坐标原点,分别以过点且平行于的直线、,所在的直线
为轴、轴、轴建立空间直角坐标系,
则,,,,
,,.
设,分别为平面和的法向量,
则,即,
令得,
,即,令得,
,
所以二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】某车间租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品8件和B类产品15件,乙种设备每天能生产A类产品10件和B类产品25件,已知设备甲每天的租赁费300元,设备乙每天的租赁费400元,现车间至少要生产A类产品100件,B类产品200件,所需租赁费最少为__元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为节能环保,推进新能源汽车推广和应用,对购买纯电动汽车的用户进行财政补贴,财政补贴由地方财政补贴和国家财政补贴两部分组成. 某地补贴政策如下(表示纯电续航里程):
有三个纯电动汽车店分别销售不同品牌的纯电动汽车,在一个月内它们的销售情况如下:
(每位客户只能购买一辆纯电动汽车)
(1)从上述购买纯电动汽车的客户中随机选一人,求此人购买的是店纯电动汽车且享受补贴不低于3.5万元的概率;
(2)从上述两个纯电动汽车店的客户中各随机选一人,求恰有一人享受5万元财政补贴的概率;
(3)从上述三个纯电动汽车店的客户中各随机选一人, 这3个人享受的财政补贴分别记为. 求随机变量的分布列. 试比较数学期望的大小;比较方差 的大小. (只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:过点,且一个焦点坐标为.
(Ⅰ)求椭圆的方程及离心率;
(Ⅱ)过点且与x轴不垂直的直线与椭圆C交于两点,若在线段上存在点,使得以MP, MQ为邻边的平行四边形是菱形,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校共有学生15000人,其中男生10500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集200位学生每周平均体育运动时间的样本数据(单位:小时).
(1)应收集多少位女生的样本数据?
(2)根据这200个样本数据,得到学生每周平均体育运动时间的频率分布直方图,其中样本数据的分组区间为:,,,,,.估计该校学生每周平均体育运动时间超过4小时的概率.
(3)在样本数据中,有40位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.(把表简要画在答题卡上)
男生 | 女生 | 总计 | |
每周平均体育运动时间不超过4小时 | |||
每周平均体育运动时间超过4小时 | |||
总计 |
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】双曲线C的渐近线方程为,一个焦点为F(0,﹣8),则该双曲线的标准方程为_____.已知点A(﹣6,0),若点P为C上一动点,且P点在x轴上方,当点P的位置变化时,△PAF的周长的最小值为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】洛萨科拉茨Collatz,是德国数学家,他在1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半即;如果n是奇数,则将它乘3加即,不断重复这样的运算,经过有限步后,一定可以得到如初始正整数为6,按照上述变换规则,我们得到一个数列:6,3,10,5,16,8,4,2,对科拉茨猜想,目前谁也不能证明,更不能否定现在请你研究:如果对正整数首项按照上述规则施行变换注:1可以多次出现后的第八项为1,则n的所有可能的取值为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com