精英家教网 > 高中数学 > 题目详情

【题目】已知三角形内角A满足,则的值为(

A. B. C. D.

【答案】D

【解析】

将已知等式两边平方,判断出cosA小于0,sinA大于0,且sinA的绝对值大于cosA的绝对值,利用完全平方公式求出sinA﹣cosA的值,与已知等式联立求出sinA与cosA的值,即可确定出的值.

A为三角形内角,且sinA+cosA=

将sinA+cosA=两边平方得:2sinAcosA=﹣

A为钝角,即sinA>0,cosA<0,且|sinA|>|cosA|,

∴1﹣2sinAcosA=,即(sinA﹣cosA)2=

∵sinA﹣cosA>0,

∴sinA﹣cosA=

联立得:

解得:sinA=,cosA=﹣

sin2A=

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某年级组织学生参加了某项学术能力测试,为了解参加测试学生的成绩情况,从中随机抽取20名学生的测试成绩作为样本,规定成绩大于或等于80分的为优秀,否则为不优秀.统计结果如图:

(1)求的值和样本的平均数;

(2)从该样本成绩优秀的学生中任选两名,求这两名学生的成绩至少有一个落在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,对一切正整数,点都在函数的图象上,记的等差中项为.

)求数列的通项公式;

)若,求数列的前项和

)设集合,等差数列的任意一项,其中中的最小数,且,求的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,平面

分别为线段上的点,且

(1)证明:平面

(2)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校共有教师300人,其中中级教师有120人,高级教师与初级教师的人数比为.为了解教师专业发展要求,现采用分层抽样的方法进行调查,在抽取的样本中有中级教师72人,则该样本中的高级教师人数为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是菱形,且∠DAB60°.点E是棱PC的中点,平面ABE与棱PD交于点F

(1)求证:ABEF

(2)若PAPDAD,且平面PAD⊥平面ABCD,求平面PAF与平面AFE所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为准线为.已知以为圆心半径为4的圆与交于两点是该圆与抛物线的一个交点.

(1)求的值

(2)已知点的纵坐标为且在上异于点的另两点且满足直线和直线的斜率之和为试问直线是否经过一定点若是求出定点的坐标否则请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,且函数图象的两相邻对称轴间的距离为.

(1)求的值;

(2)求函数的对称轴方程;

(3)当时,方程有两个不同的实根,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的奇函数

(1)求实数的值

(2)如果对任意,不等式恒成立,求实数的取值范围

查看答案和解析>>

同步练习册答案