精英家教网 > 高中数学 > 题目详情

设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式x[(f(x)-f(-x)]<0的解集为________.

(-1,0)∪(0,1)
分析:由函数奇偶性的性质,我们根据已知中奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,易判断函数f(x)在(-∞,0),(0,1),(-1,0),(0,+∞)上的符号,进而得到不等式x[(f(x)-f(-x)]<0的解集.
解答:若奇函数f(x)在(0,+∞)上为增函数,
则函数f(x)在(-∞,0)上也为增函数,
又∵f(1)=0
∴f(-1)=0
则当x∈(-∞,0)∪(0,1)上时,f(x)<0,f(x)-f(-x)<0
当x∈(-1,0)∪(0,+∞)上时,f(x)>0,f(x)-f(-x)>0
则不等式x[(f(x)-f(-x)]<0的解集为(-1,0)∪(0,1)
故答案为:(-1,0)∪(0,1)
点评:本题考查的知识点是奇偶性与单调性的综合应用,其中奇函数在对称区间上单调性相同,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式x[(f(x)-f(-x)]<0的解集为
(-1,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

设奇函数f(x)在[-1,1]上是增函数,且f(-1)=-1,若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时,t的取值范围是(  )
A、-2≤t≤2
B、-
1
2
≤t≤
1
2
C、t≥2或t≤-2或t=0
D、t≥
1
2
或t≤-
1
2
或t=0

查看答案和解析>>

科目:高中数学 来源: 题型:

设奇函数f(x)在(-∞,0)上为增函数,且f(-1)=0,则不等式
f(-x)-f(x)
x
>0
的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如果设奇函数f(x)在(0,+∞)上为增函数,且f(2)=0,则不等式
f(x)-f(-x)
x
<0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式(x-1)f(x-1)<0的解集为(  )

查看答案和解析>>

同步练习册答案