精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\left\{{\begin{array}{l}{{{log}_3}x,(x>0)}\\{{3^x},(x≤0)}\end{array}}$若f(a)=$\frac{1}{3}$,则实数a的值为-1或$\root{3}{3}$.

分析 当a>0时,f(a)=log3a=$\frac{1}{3}$;当a≤0时,f(a)=3a=$\frac{1}{3}$.由此能求出实数a的值.

解答 解:∵函数f(x)=$\left\{{\begin{array}{l}{{{log}_3}x,(x>0)}\\{{3^x},(x≤0)}\end{array}}$,f(a)=$\frac{1}{3}$,
∴当a>0时,f(a)=log3a=$\frac{1}{3}$,解得a=$\root{3}{3}$,
当a≤0时,f(a)=3a=$\frac{1}{3}$,解得a=-1.
∴实数a的值为-1或$\root{3}{3}$.
故答案为:-1或$\root{3}{3}$.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\sqrt{2}sinωxcosωx+\sqrt{2}{cos^2}ωx-\frac{{\sqrt{2}}}{2}({ω>0})$,若函数f(x)在$({\frac{π}{2},π})$上单调递减,则实数ω的取值范围是(  )
A.$[{\frac{1}{4},\frac{5}{8}}]$B.$[{\frac{1}{2},\frac{5}{4}}]$C.$({0,\frac{1}{2}}]$D.$({0,\frac{1}{4}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知偶函数f(x)的定义域为R,若f(x-1)为奇函数,且f(2)=3,则f(5)+f(6)的值为(  )
A.-3B.-2C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.重庆某重点中学高一新生小王家在县城A地,现在主城B地上学.周六小王的父母从早上8点从家出发,驾车3小时到达主城B地,期间由于交通等原因,小王父母的车所走的路程s(单位:km)与离家的时间t(单位:h)的函数关系为s(t)=-5t(t-13).达到主城B地后,小王父母把车停在B地,在学校陪小王玩到16点,然后开车从B地以60km/h的速度沿原路返回.
(1)求这天小王父母的车所走路程s(单位:km)与离家时间t(单位:h)的函数解析式;
(2)在距离小王家60km处有一加油站,求这天小王父母的车途经加油站的时间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知tanα=-2,求下列各式的值:
(1)$\frac{sinα-3cosα}{sinα+cosα}$
(2)$\frac{1}{sinα•cosα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a=2log20.3,b=20.1,c=0.21.3,则a,b,c的大小关系是(  )
A.c>b>aB.c>a>bC.a>b>cD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.根据表格内的数据,可以断定方程ex-x-3=0的一个根所在区间是(  )
x-10123
ex0.3712.727.3920.08
x+323456
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=ax2-2x+1在[1,10]上单调递减,则实数a的取值范围为$({-∞,\frac{1}{10}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,虚线部分是平面直角坐标系四个象限的角平分线,实线部分是函数y=f(x)的部分图象,则f(x)可能是(  )
A.x2sinxB.xsinxC.x2cosxD.xcosx

查看答案和解析>>

同步练习册答案