精英家教网 > 高中数学 > 题目详情

【题目】. 问:是否存在正数m,使得对于任意正数,可使为三角形的三边构成三角形?如果存在:①试写出一组x,y,m的值,②求出所有m的值;如果不存在,请说明理由.

【答案】

【解析】试题分析:首先判断ab,由构成三角形的条件可得b+c>a且a+b>c,即有+m>x+y且x+y+>m.运用参数分离和换元法,结合基本不等式和函数的单调性,可得最值,进而得到m的范围.

试题解析:

x>0,y>0,a=x+y,

由a2﹣b2=(x+y)2﹣(x2+xy+y2)=xy>0,

可得a>b,

由题意可得要构成三角形,必须

b+c>a且a+b>c,

即有+m>x+y

且x+y+>m

由m

=2+

当且仅当x=y取得等号.

可得m<2+

由m

=+

令u=,则上式为u+

可令t=u+(t≥2),可得上式为t﹣=

可得在[2,+∞)递减,可得t﹣≤2﹣

即有m>2﹣

①②可得m的取值范围是(2﹣,2+).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图茎叶图表示的是甲,乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱柱中,底面为矩形,面平面====2,的中点.

)求证:

BD与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱中,底面为矩形,平面平面====2,的中点.

(Ⅰ)求证:

(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,平面侧面,且

(1)求证:

(2)若直线与平面所成角的大小为,求锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x,y∈R且满足不等式组 ,当k=1时,不等式组所表示的平面区域的面积为 , 若目标函数z=3x+y的最大值为7,则k的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,已知(sin A+sin B+sin C)·(sin B+sin C-sin A)=3sin Bsin C.

(Ⅰ)求角A的值;

(Ⅱ)sin Bcos C的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的部分图像如图所示,将的图象向右平移个单位长度后得到函数的图象.

(1)求函数的解析式;

(2)在中,角A,B,C满足,且其外接圆的半径R=2,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有以下命题:
①对任意的α∈R都有sin3α=3sinα﹣4sin3α成立;
②对任意的△ABC都有等式a=bcosA+ccosB成立;
③满足“三边是连续的三个正整数且最大角是最小的2倍”的三角形存在且唯一;
④若A,B是钝角△ABC的二锐角,则sinA+sinB<cosA+cosB.
其中正确的命题的个数是(
A.4
B.3
C.2
D.1

查看答案和解析>>

同步练习册答案