分析 由三角函数的诱导公式公式及正弦函数的和差化积公式化简已知式子可得$sinα+cosα=-\frac{1}{2}$,平方可得答案.
解答 解:若$\frac{cos(π-2α)}{sin(α-\frac{π}{4})}$=$\frac{-cos2α}{sin(α-\frac{π}{4})}=\frac{si{n}^{2}α-co{s}^{2}α}{\frac{\sqrt{2}}{2}(sinα-cosα)}$
=$\sqrt{2}(sinα+cosα)=-\frac{\sqrt{2}}{2}$,
∴$sinα+cosα=-\frac{1}{2}$.
∴平方可得1+sin2α=$\frac{1}{4}$.
∴sin2α=$-\frac{3}{4}$
故答案为:$-\frac{3}{4}$.
点评 本题考查两角和与差的三角函数公式,二倍角公式的应用,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{1}{2}$+$\frac{3}{2}$i | B. | -$\frac{1}{2}$-$\frac{3}{2}$i | C. | -1+3i | D. | -1-3i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a>b⇒a-c>b-c | B. | a>b⇒ac>bc | C. | a>b⇒a2>b2 | D. | a>b⇒ac2>bc2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com