精英家教网 > 高中数学 > 题目详情

【题目】已知函数,函数,其中.

1如果函数处的切线均为,求切线的方程及的值;

2如果曲线有且仅有一个公共点,求的取值范围.

【答案】12.

【解析】

试题分析:1处的切线相同,则在该点出的导数相等,从而求解的值,以及切线的方程;2设函数,则将原问题转化为有有唯一解,然后对进行分类讨论即可.

试题解析:1解:求导,得.

由题意,得切线的斜率,即,解得.

又切点坐标为,所以切线的方程为.

2解:设函数.

“曲线有且仅有一个公共点”等价于“函数有且仅有一

个零点”. 求导,得.

时,

,得,所以单调递增.

又因为,所以有且仅有一个零点,符合题意.

时,

变化时,的变化情况如下表所示:

0

所以上单调递减,在上单调递增,

所以当时,

有且仅有一个零点,符合题意.

时,

,解得.

变化时,的变化情况如下表所示:

-

0

所以上单调递减,在上单调递增,

所以当时,.

因为,且上单调递增,

所以.

又因为存在

所以存在使得

所以函数存在两个零点,与题意不符.

综上,曲线有且仅有一个公共点时,的范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,两点的坐标分别为,动点满足:直线与直线的斜率之积为.

(1)求动点的轨迹方程;

(2)过点作两条互相垂直的射线,与1的轨迹分别交于两点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线上的点到焦点的距离.

)求抛物线的方程;

)如图,直线与抛物线交于两点,点关于轴的对称点是.求证:直线恒过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以边长为4的等比三角形的顶点以及边的中点为左、右焦点的椭圆过两点.

1求该椭圆的标准方程;

2过点轴不垂直的直线交椭圆于两点,求证直线的交点在一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:的离心率为,点在椭圆C上.

1求椭圆C的方程;

2设动直线与椭圆C有且仅有一个公共点,判断是否存在以原点O为圆心的圆,满足此圆与相交两点两点均不在坐标轴上,且使得直线 的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角梯形PBCD中,,A为PD的中点,如图.将PAB沿AB折到SAB的位置,使SBBC,点E在SD上,且,如图.

)求证:SA平面ABCD;

)求二面角EACD的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.

(1)求椭圆的方程式;

(2)已知动直线与椭圆相交于两点.

①若线段中点的横坐标为,求斜率的值;

②已知点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax2-a-lnx,其中aR.

)讨论f(x)的单调性;

)当时,恒成立,求a的取值范围.(其中,e=2.718为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

其中,若函数,且它的最小正周期为

(普通中学只做1,2问)

(1)求的值,并求出函数的单调递增区间;

(2)当(其中)时,记函数的最大值与最小值分

别为,设,求函数的解

析式;

(3)在第(2)问的前提下,已知函数 ,若对于任意 ,总存在,使得

成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案