精英家教网 > 高中数学 > 题目详情
为三角形的三边,求证:
见解析

试题分析:利用分析法证明,可先将分式不等式转化为整式不等式,然后利用三角形两边之和大于第三边即可.
证明:要证明:
需证明:a(1+b)(1+c)+ b(1+a)(1+c)> c(1+a)(1+b)          4分
需证明:a(1+b+c+bc)+ b(1+a+c+ac)> c(1+a+b+ab)  需证明a+2ab+b+abc>c       8分
∵a,b,c是的三边  ∴a>0,b>0,c>0且a+b>c,abc>0,2ab>0
∴a+2ab+b+abc>c
成立。         12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知x∈R,a=x2,b=2-x,c=x2-x+1,试证明a,b,c至少有一个不小于1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是一个自然数,的各位数字的平方和,定义数列是自然数,).
(1)求
(2)若,求证:
(3)当时,求证:存在,使得

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在Rt△OAB中,∠O=90°,则cos2A+cos2B=1.根据类比推理的方法,在三棱锥O-ABC中,OA⊥OB,OB⊥OC,OC⊥OA,α、β、γ分别是三个侧面与底面所成的二面角,则______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在Rt△ABC中,CA⊥CB,斜边AB上的高为h1,则
1
h21
=
1
|CA|2
+
1
|CB|2

类比此性质,如图,在四面体P-ABC中,若PA,PB,PC两两垂直,
底面ABC上的高为h,则得到的一个正确结论是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知“凡是9的倍数的自然数都是3的倍数”和“自然数n是9的倍数”,根据三段论推理规则,我们可以得到的结论是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用反证法证明命题“三角形的内角至多有一个钝角”时,假设的内容应为( )
A.假设至少有一个钝角B.假设至少有两个钝角
C.假设没有一个钝角D.假设没有一个钝角或至少有两个钝角

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,中,,以为直径的半圆分别交于点,若,则       

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,且求证:中至少有一个是负数。

查看答案和解析>>

同步练习册答案