【题目】已知为坐标原点,椭圆的右焦点为,过的直线与相交于两点,点满足.
(1)当的倾斜角为时,求直线的方程;
(2)试探究在轴上是否存在定点,使得为定值?若存在,求出点的坐标;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】下列四个命题中,正确命题的个数有( )
①,
②命题“,”的否定是“,”
③“若,则,中至少有一个不小于2”的逆命题是真命题
④复数,则的充分不必要条件是
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,四棱锥的底面是边长为2的正方形,平面平面,,.
(1)求证:平面平面;
(2)设为的中点,问边上是否存在一点,使平面,并求此时点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某花卉企业引进了数百种不同品种的康乃馨,通过试验田培育,得到了这些康乃馨种子在当地环境下的发芽率,并按发芽率分为组:、、、加以统计,得到如图所示的频率分布直方图.企业对康乃馨的种子进行分级,将发芽率不低于的种子定为“级”,发芽率低于但不低于的种子定为“级”,发芽率低于的种子定为“级”.
(Ⅰ)现从这些康乃馨种子中随机抽取一种,估计该种子不是“级”种子的概率;
(Ⅱ)该花卉企业销售花种,且每份“级”、“级”、“级”康乃馨种子的售价分别为元、元、元.某人在市场上随机购买了该企业销售的康乃馨种子两份,共花费元,以频率为概率,求的分布列和数学期望;
(Ⅲ)企业改进了花卉培育技术,使得每种康乃馨种子的发芽率提高到原来的倍,那么对于这些康乃馨的种子,与旧的发芽率数据的方差相比,技术改进后发芽率数据的方差是否发生变化?若发生变化,是变大了还是变小了?(结论不需要证明).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.
某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
频数 | 6 | 26 | 38 | 22 | 8 |
(I)在答题卡上作出这些数据的频率分布直方图:
(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若抛物线的焦点为,是坐标原点,为抛物线上的一点,向量与轴正方向的夹角为60°,且的面积为.
(1)求抛物线的方程;
(2)若抛物线的准线与轴交于点,点在抛物线上,求当取得最大值时,直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知点,,抛物线的焦点为线段中点.
(1)求抛物线的方程;
(2)过点的直线交抛物线于两点,,过点作抛物线的切线,为切线上的点,且轴,求面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com