精英家教网 > 高中数学 > 题目详情

设函数分别在处取得极小值、极大值.平面上点的坐标分别为,该平面上动点满足,点是点关于直线的对称点,.求

(Ⅰ)求点的坐标;

(Ⅱ)求动点的轨迹方程.

 

【答案】

解: (1)令解得

时,, 当时, ,当时,

所以,函数在处取得极小值,在取得极大值,故,

所以, 点A、B的坐标为.

(2) 设

,所以,又PQ的中点在上,

所以

消去.

另法:点P的轨迹方程为其轨迹为以(0,2)为圆心,半径为3的圆;设点(0,2)关于y=2(x-4)的对称点为(a,b),则点Q的轨迹为以(a,b),为圆心,半径为3的圆,由得a=8,b=-2

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=-x3+3x+2分别在x1、x2处取得极小值、极大值.xOy平面上点A、B的坐标分别为(x1,f(x1))、(x2,f(x2)),该平面上动点P(x,y),Q(mx,2y),
OC
=
OQ
+m
OA
满足
AP
OC
=1-m

(1)求点A、B的坐标;
(2)求动点P的轨迹方程,并判断轨迹的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年广东卷)(14分)

设函数分别在处取得极小值、极大值.平面上点A、B的坐标分别为,该平面上动点P满足,点Q是点P关于直线的对称点.求:

(Ⅰ)点A、B的坐标 ;

(Ⅱ)动点Q的轨迹方程

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数分别在处取得极小值、极大值.平面上点A、B的坐标分别为,该平面上动点P满足,点Q是点P关于直线的对称点.求:

(Ⅰ)点A、B的坐标  

(Ⅱ)动点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2012年苏教版高中数学选修1-1 3.3导数在研究函数中的应用练习卷(解析版) 题型:解答题

(2006年广东卷)设函数分别在处取得极小值、极大值.平面上点A、B的坐标分别为,该平面上动点P满足,点Q是点P关于直线的对称点

求:(Ⅰ)点A、B的坐标 ;

(Ⅱ)动点Q的轨迹方程

 

查看答案和解析>>

同步练习册答案